Circuits

by

Fawwaz T. Ulaby, Michel M. Maharbiz, Cynthia M. Furse

Tables

Chapter 1: Circuit Terminology
Chapter 2: Resisitive Circuits
Chapter 3: Analysis Techniques
Chapter 4: Operational Amplifiers
Chapter 5: RC and RL First-Order Circuits
Chapter 6: RLC Circuits
Chapter 7: ac Analysis
Chapter 8: ac Power
Chapter 9: Frequency Response of Circuits and Filters
Chapter 10: Three-Phase Circuits
Chapter 11: Magnetically Coupled Circuits
Chapter 12: Circuit Analysis by Laplace Transform
Chapter 13: Fourier Analysis Technique

Chapter 1
 Circuit Terminology

Tables

Table 1-1: Fundamental and electrical SI units.
Table 1-2: Multiple and submultiple prefixes.
Table 1-3: Symbols for common circuit elements.
Table 1-4: Circuit terminology.
Table 1-5: Voltage and current sources.

Chapter 2
 Resistive Circuits

Tables

Table 2-1: Conductivity and resistivity of some common materials at $20^{\circ} \mathrm{C}$.
Table 2-2: Diameter d of wires, according to the American Wire Gauge (AWG) system.
Table 2-3: Common resistor terminology.
Table 2-4: Equally valid, multiple statements of Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL).

Table 2-5: Equivalent circuits.

Chapter 3
 Analysis Techniques

 Tables

 Tables}

Table 3-1: Properties of Thévenin/Norton analysis techniques.
Table 3-2: Summary of circuit analysis methods.

Chapter 4
 Operational Amplifiers

Tables

Table 4-1: Characteristics and typical ranges of op-amp parameters. The rightmost column represents the values assumed by the ideal op-amp model.

Table 4-2: Characteristics of the ideal op-amp model.
Table 4-3: Summary of op-amp circuits.
Table 4-4: Correspondence between binary sequence and decimal value for a 4-bit digital signal and output of a DAC with $G=-0.5$.

Table 4-5: List of Multisim components for the circuit in Fig. 4-35.
Table 4-6: Components for the circuit in Fig. 4-37.

Chapter 5 RC and RL First-Order Circuits
 Tables

Table 5-1: Common nonperiodic waveforms.
Table 5-2: Relative electrical permittivity of common insulators: $\varepsilon_{\mathrm{r}}=\varepsilon / \varepsilon_{0}$ and $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$.
Table 5-3: Relative magnetic permeability of materials, $\mu_{\mathrm{r}}=\mu / \mu_{0}$ and $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$.
Table 5-4: Basic properties of R, L, and C.
Table 5-5: Response forms of basic first-order circuits.
Table 5-6: Multisim component list for the circuit in Fig. 5-52.

Chapter 6
 RLC Circuits

Tables

Table 6-1: Step response of RLC circuits for $t \geq 0$.
Table 6-2: General solution for second-order circuits for $t \geq 0$.
Table 6-3: Component values for the circuit in Fig. 6-19.
Table 6-4: Parts for the Multisim circuit in Fig. 6-23.

Chapter 7
 ac Analysis

Tables

Table 7-1: Useful trigonometric identities (additional relations are given in Appendix D).
Table 7-2: Properties of complex numbers.
Table 7-3: Time-domain sinusoidal functions $x(t)$ and their cosine-reference phasor-domain counterparts \mathbf{X}, where $x(t)=\mathfrak{R e}\left[\mathbf{X} e^{j \omega t}\right]$.

Table 7-4: Summary of $v-i$ properties for R, L, and C.
Table 7-5: Inverting amplifier gain G as a function of oscillation frequency $f . G_{\text {ideal }}=-5$.

Chapter 8

 ac Power
Tables

Table 8-1: Summary of power-related quantities.
Table 8-2: Power factor leading and lagging relationships for a $\operatorname{load} \mathbf{Z}=R+j X$.

Chapter 9
 Frequency Response of Circuits and Filters

Tables

Table 9-1: Correspondence between power ratios in natural numbers and their dB values (left table) and between voltage or current ratios and their dB values (right table).

Table 9-2: Bode straight-line approximations for magnitude and phase.
Table 9-3: Attributes of series and parallel RLC bandpass circuits.

Chapter 10
 Three-Phase Circuits
 Tables

Table 10-1: Balanced networks.

Chapter 11
 Magnetically Coupled Circuits

Tables

There are no tables in this chapter.

Chapter 12
 Circuit Analysis by Laplace Transform

Tables

Table 12-1: Properties of the Laplace transform $\left(f(t)=0\right.$ for $\left.t<0^{-}\right)$.
Table 12-2: Examples of Laplace transform pairs for $T \geq 0$. Note that multiplication by $u(t)$ guarantees that $f(t)=0$ for $t<0^{-}$.

Table 12-3: Transform pairs for four types of poles.
Table 12-4: Circuit models for R, L, and C in the s-domain.

Chapter 13
 Fourier Analysis Technique

Tables

Table 13-1: Trigonometric integral properties for any integers m and n. The integration period $T=2 \pi / \omega_{0}$.
Table 13-2: Fourier series expressions for a select set of periodic waveforms.
Table 13-3: Fourier series representations for a periodic function $f(t)$.
Table 13-4: Examples of Fourier transform pairs. Note that constant $a \geq 0$.
Table 13-5: Major properties of the Fourier transform.
Table 13-6: Methods of solution.
Table 13-7: Multisim circuits of the $\Sigma \Delta$ modulator.

Table 1-1 Fundamental and electrical SI units.

Dimension	Unit	Symbol
Fundamental:		
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electric charge	coulomb	C
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd
Electrical:		
Current	ampere	A
Voltage	volt	V
Resistance	ohm	Ω
Capacitance	farad	F
Inductance	henry	H
Power	watt	W
Frequency	hertz	Hz

Table 1-2 Multiple and submultiple prefixes.

Prefix	Symbol	Magnitude
exa	E	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}

Table 1-3 Symbols for common circuit elements.

Table 1-4 Circuit terminology.

Node: An electrical connection between two or more elements.

Ordinary node: An electrical connection node that connects to only two elements.

Extraordinary node: An electrical connection node that connects to three or more elements.

Branch: Trace between two consecutive nodes with only one element between them.

Path: Continuous sequence of branches with no node encountered more than once.

Extraordinary path: Path between two adjacent extraordinary nodes.

Loop: Closed path with the same start and end node.
Independent loop: Loop containing one or more branches not contained in any other independent loop.

Mesh: Loop that encloses no other loops.
In series: Elements that share the same current. They have only ordinary nodes between them.

In parallel: Elements that share the same voltage. They share two extraordinary nodes.

Table 1-5 Voltage and current sources.

Independent Sources	
Ideal Voltage Source	Realistic Voltage Source Any source
Ideal Current Source dc source Any source	Realistic Current Source Any source

Dependent Sources	
Voltage-Controlled Voltage Source (VCVS)	Voltage-Controlled Current Source (VCCS)
Current-Controlled Voltage Source (CCVS)	Current-Controlled Current Source (CCCS)

Note: α, g, r, and β are constants; v_{x} and i_{x} are a specific voltage and a specific current elsewhere in the circuit. ${ }^{*}$ Lowercase v and i represent voltage and current sources that may or may not be time-varying, whereas uppercase V and I denote dc sources.

Table 2-1 Conductivity and resistivity of some common materials at $20^{\circ} \mathrm{C}$.

Material	Conductivity σ $(\mathbf{S} / \mathrm{m})$	Resistivity ρ $(\Omega-\mathrm{m})$
Conductors		
Silver	6.17×10^{7}	1.62×10^{-8}
Copper	5.81×10^{7}	1.72×10^{-8}
Gold	4.10×10^{7}	2.44×10^{-8}
Aluminum	3.82×10^{7}	2.62×10^{-8}
Iron	1.03×10^{7}	9.71×10^{-8}
Mercury (liquid)	1.04×10^{6}	9.58×10^{-8}
Semiconductors		
Carbon (graphite)	7.14×10^{4}	1.40×10^{-5}
Pure germanium	2.13	0.47
Pure silicon	4.35×10^{-4}	2.30×10^{3}
Insulators	$\sim 10^{-10}$	$\sim 10^{10}$
Paper	$\sim 10^{-12}$	$\sim 10^{12}$
Glass	$\sim 3.3 \times 10^{-13}$	$\sim 3 \times 10^{12}$
Teflon	$\sim 10^{-14}$	$\sim 10^{14}$
Porcelain	$\sim 10^{-15}$	$\sim 10^{15}$
Mica	$\sim 10^{-16}$	$\sim 10^{16}$
Polystyrene	$\sim 10^{-17}$	$\sim 10^{17}$
Fused quartz		
Common materials		
Distilled water	5.5×10^{-6}	1.8×10^{5}
Drinking water	$\sim 5 \times 10^{-3}$	~ 200
Sea water	4.8	0.2
Graphite	1.4×10^{-5}	71.4×10^{3}
Rubber	1×10^{-13}	1×10^{13}
Biological tissues		
Blood	~ 1.5	~ 0.67
Muscle	~ 1.5	10
Fat		
	0.1	

Table 2-2 Diameter d of wires, according to the American Wire Gauge (AWG) system.

AWG Size Designation	Diameter d (mm)
0	8.3
2	6.5
4	5.2
6	4.1
10	2.6
14	1.6
18	1.0
20	0.8

Table 2-3 Common resistor terminology.

Thermistor	R sensitive to temperature
Piezoresistor	R sensitive to pressure
Light-dependent R (LDR)	R sensitive to light intensity
Rheostat	2-terminal variable resistor
Potentiometer	3-terminal variable resistor

Table 2-4 Equally valid, multiple statements of Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL).

[^0]
Table 2-5 Equivalent circuits.

Table 3-1 Properties of Thévenin/Norton analysis techniques.

To Determine	Method	Can Circuit Contain Dependent Sources?	Relationship
$v_{\text {Th }}$	Open-circuit v	Yes	$v_{\text {Th }}=v_{\text {oc }}$
$v_{\text {Th }}$	Short-circuit i (if $R_{\text {Th }}$ is known)	Yes	$v_{\text {Th }}=R_{\text {Th }} i_{\text {sc }}$
$R_{\text {Th }}$	Open/short	Yes	$R_{\text {Th }}=v_{\text {oc }} / i_{\text {sc }}$
$R_{\text {Th }}$	Equivalent R	No	$R_{\text {Th }}=R_{\text {eq }}$
$R_{\text {Th }}$	External source	Yes	$R_{\text {Th }}=v_{\text {ex }} / i_{\text {ex }}$
$i_{\mathrm{N}}=v_{\mathrm{Th}} / R_{\mathrm{Th}} ; R_{\mathrm{N}}=R_{\text {Th }}$			

Table 3-2 Summary of circuit analysis methods.

Method	Common Use		
Ohm's law	Relates V, I, R. Used with all other methods to convert $V \Leftrightarrow I$.		
R, G in series and $\\|$	Combine to simplify circuits. R in series adds, and is most often used. G in $\\|$ adds, so may be used when much of the circuit is in parallel.		
Y- Δ or ח-T	Convert resistive networks that are not in series or in $\\|$ into forms that can often be combined in series or in $\\|$. Also simplifies analysis of bridge circuits.		
Voltage/current dividers	Common circuit configurations used for many applications, as well as handy analysis tools. Dividers can also be used as combiners when used "backwards."		
Kirchhoff's laws (KVL/KCL)	Solve for branch currents. Often used to derive other methods.		
Node-voltage method	Solves for node voltages. Probably the most commonly used method because (1) node voltages are easy to measure, and (2) there are usually fewer nodes than branches and therefore fewer unknowns (smaller matrix) than KVL/KCL.		
Mesh-current method	Solves for mesh currents. Fewer unknowns than KVL/KCL, approximately the same number of unknowns as node voltage method. Less commonly used, because mesh currents seem less intuitive, but useful when combining additional blocks in cascade.		
Node-voltage by-inspection method	Quick, simplified way of analyzing circuits. Very commonly used for quick analysis in practice. Limited to circuits containing only independent current sources.		

Mesh-current Quick, simplified way of analyzing circuits. Very commonly used for quick analysis in by-inspection practice. Limited to circuits containing only independent voltage sources.
method
Superposition Simplifies circuits with multiple sources. Commonly used for both calculation and measurement.

Source transfor- mation	Simplifies circuits with multiple sources. Commonly used for both calculation/design and measurement/test applications.
Thévenin and Norton	Very often used to simplify circuits in both calculation and measurement applications. equivalents
Also used to analyze cascaded systems. Thévenin is the more commonly used form, but Norton is often handy for analyzing parallel circuits. Source transformation allows easy conversion between Thévenin and Norton.	

Input/output Commonly used to evaluate when cascaded circuits can be analyzed individually or resistance when full circuit analysis or a buffer is needed.
($R_{\text {in }} / R_{\text {out }}$)

Table 4-1 Characteristics and typical ranges of op-amp parameters. The rightmost column represents the values assumed by the ideal op-amp model.

Op-Amp Characteristics	Parameter	Typical Range	Ideal Op Amp
- Linear input-output response	Open-loop gain A	10^{4} to $10^{8}(\mathrm{~V} / \mathrm{V})$	∞
- High input resistance	Input resistance R_{i}	10^{6} to $10^{13} \Omega$	$\infty \Omega$
- Low output resistance	Output resistance R_{O}	1 to 100Ω	0Ω
- Very high gain	Supply voltage $V_{\text {cc }}$	5 to 24 V	As specified by manufacturer

Table 4-2 Characteristics of the ideal op-amp model. Ideal Op Amp

```
- Current constraint }\mp@subsup{i}{\textrm{p}}{}=\mp@subsup{i}{\textrm{n}}{}=
- Voltage constraint }\mp@subsup{v}{\textrm{p}}{}=\mp@subsup{v}{\textrm{n}}{
- A=\infty R R = = R R R = 0
```

Table 4-3 Summary of op-amp circuits.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits
(c) 2015 National Technology Press

Table 4-4 Correspondence between binary sequence and decimal value for a 4-bit digital signal and output of a DAC with $G=-0.5$.

$\mathbf{V}_{\mathbf{1}} \mathbf{V}_{\mathbf{2}} \mathbf{V}_{3} \mathbf{V}_{\mathbf{4}}$	Decimal Value	DAC Output (\mathbf{V})
0000	0	0
0001	1	-0.5
0010	2	-1
0011	3	-1.5
0100	4	-2
0101	5	-2.5
0110	6	-3
0111	7	-3.5
1000	8	-4
1001	9	-4.5
1010	10	-5
1011	11	-5.5
1100	12	-6
1101	13	-6.5
1110	14	-7
1111	15	-7.5

Table 4-5 List of Multisim components for the circuit in Fig. 4-35.

Component	Group	Family	Quantity	Description
1.5 k	Basic	Resistor	7	$1.5 \mathrm{k} \Omega$ resistor
15 k	Basic	Resistor	2	$15 \mathrm{k} \Omega$ resistor
3 k	Basic	Variable resistor	1	$3 \mathrm{k} \Omega$ resistor
OP_AMP_5T_VIRTUAL	Analog	Analog_Virtual	3	Ideal op amp with 5 terminals
AC_POWER	Sources	Power_Sources	1	1 V ac source, 60 Hz
VDD	Sources	Power_Sources	1	15 V supply
VSS	Sources	Power_Sources	1	-15 V supply

Table 4-6 Components for the circuit in Fig. 4-37.

Component	Group	Family	Quantity	Description
MOS_N	Transistors	Transistors_VIRTUAL	1	3-terminal N-MOSFET
MOS_P	Transistors	Transistors_VIRTUAL	1	3-terminal P-MOSFET
VDD	Sources	Power Sources	1	2.5 V supply
GND	Sources	Power Sources	2	Ground node

Table 5-1 Common nonperiodic waveforms.

waveform	Expression	General Shape
Step	$u(t-T)= \begin{cases}0 & \text { for } t<T \\ 1 & \text { for } t>T\end{cases}$	
Ramp	$r(t-T)=(t-T) u(t-T)$	$\overbrace{0}^{r(t-T)} \longleftarrow \text { Slope }=1$
Rectangle	$\begin{aligned} & \operatorname{rect}\left(\frac{t-T}{\tau}\right)=u\left(t-T_{1}\right)-u\left(t-T_{2}\right) \\ & T_{1}=T-\frac{\tau}{2} ; \quad T_{2}=T+\frac{\tau}{2} \end{aligned}$	
Exponential	$\exp [-(t-T) / \tau] u(t-T)$	

Table 5-2 Relative electrical permittivity of common insulators: $\varepsilon_{\mathrm{r}}=\varepsilon / \varepsilon_{0}$ and $\varepsilon_{0}=8.854 \times 10^{-12} \mathbf{F} / \mathbf{m}$.

Material	Relative Permittivity ε_{r}
Air (at sea level)	1.0006
Teflon	2.1
Polystyrene	2.6
Paper	$2-4$
Glass	$4.5-10$
Quartz	$3.8-5$
Bakelite	5
Mica	$5.4-6$
Porcelain	5.7

Table 5-3 Relative magnetic permeability of materials, $\mu_{\mathrm{r}}=\mu / \mu_{0}$ and $\mu_{0}=4 \pi \times 10^{-7} \mathbf{H} / \mathrm{m}$.

Material	Relative Permeability μ_{r}
All Dielectrics and	
Non-Ferromagnetic	≈ 1.0
Metals	
Ferromagnetic Metals	250
Cobalt	600
Nickel	2,000
Mild steel	$4,000-5,000$
Iron (pure)	7,000
Silicon iron	$\sim 100,000$
Mumetal	$\sim 200,000$
Purified iron	

Table 5-4 Basic properties of R, L, and C.

Property	R	L	C
$i-v$ relation	$i=\frac{v}{R}$	$i=\frac{1}{L} \int_{t_{0}}^{t} v d t^{\prime}+i\left(t_{0}\right)$	$i=C \frac{d v}{d t}$
$v-i$ relation	$v=i R$	$v=L \frac{d i}{d t}$	$v=\frac{1}{C} \int_{t_{0}}^{t} i d t^{\prime}+v\left(t_{0}\right)$
p (power transfer in)	$p=i^{2} R$	$p=L i \frac{d i}{d t}$	$p=C v \frac{d v}{d t}$
w (stored energy)	0	$w=\frac{1}{2} L i^{2}$	$w=\frac{1}{2} C v^{2}$
Series combination	$R_{\mathrm{eq}}=R_{1}+R_{2}$	$L_{\mathrm{eq}}=L_{1}+L_{2}$	$\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
Parallel combination	$\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	$\frac{1}{L_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	$C_{\mathrm{eq}}=C_{1}+C_{2}$
dc behavior	no change	short circuit	open circuit
Can v change instantaneously?	yes	yes	no
Can i change instantaneously?	yes	no	yes

Table 5-5 Response forms of basic first-order circuits.

Circuit	Diagram	Response
RC		$\begin{gathered} v_{\mathrm{C}}(t)=\left\{v_{\mathrm{C}}(\infty)+\left[v_{\mathrm{C}}\left(T_{0}\right)-v_{\mathrm{C}}(\infty)\right] e^{-\left(t-T_{0}\right) / \tau}\right\} u\left(t-T_{0}\right) \\ (\tau=R C) \end{gathered}$
RL		$\begin{gathered} i_{\mathrm{L}}(t)=\left\{i_{\mathrm{L}}(\infty)+\left[i_{\mathrm{L}}\left(T_{0}\right)-i_{\mathrm{L}}(\infty)\right] e^{-\left(t-T_{0}\right) / \tau}\right\} u\left(t-T_{0}\right) \\ (\tau=L / R) \end{gathered}$
Ideal integrator		$v_{\text {out }}(t)=-\frac{1}{R C} \int_{t_{0}}^{t} v_{\mathrm{i}} d t^{\prime}+v_{\text {out }}\left(t_{0}\right)$
Ideal differentiator		$v_{\text {out }}(t)=-R C \frac{d v_{\mathrm{i}}}{d t}$

Table 5-6 Multisim component list for the circuit in Fig. 5-52.

Component	Group	Family	Quantity	Description
1 k	Basic	Resistor	1	$1 \mathrm{k} \Omega$ resistor
10 k	Basic	Resistor	1	$10 \mathrm{k} \Omega$ resistor
5 f	Basic	Capacitor	1	5 fF capacitor
VOLTAGE_CONTROLLED_SPST	Basic	Switch	1	Switch
DC_POWER	Sources	Power_Sources	1	2.5 V dc source
PULSE_VOLTAGE	Sources	Signal_Voltage_Source	1	Pulse-generating voltage source

Table 6-1 Step response of RLC circuits for $t \geq 0$

	Parallel RLC
Total Response	Total Response
Overdamped ($\alpha>\omega_{0}$) $\begin{aligned} v_{\mathrm{C}}(t) & =A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}+v_{\mathrm{C}}(\infty) \\ A_{1} & =\frac{\frac{1}{C} i_{\mathrm{C}}(0)-s_{2}\left[v_{\mathrm{C}}(0)-v_{\mathrm{C}}(\infty)\right]}{s_{1}-s_{2}} \\ A_{2} & =\left[\frac{\frac{1}{C} i_{\mathrm{C}}(0)-s_{1}\left[v_{\mathrm{C}}(0)-v_{\mathrm{C}}(\infty)\right]}{s_{2}-s_{1}}\right] \end{aligned}$	$\begin{aligned} & \text { Overdamped }\left(\alpha>\omega_{0}\right) \\ & \qquad \begin{aligned} i_{\mathrm{L}}(t) & =A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}+i_{\mathrm{L}}(\infty) \\ A_{1} & =\frac{\frac{1}{L} v_{\mathrm{L}}(0)-s_{2}\left[i_{\mathrm{L}}(0)-i_{\mathrm{L}}(\infty)\right]}{s_{1}-s_{2}} \\ A_{2} & =\left[\frac{\frac{1}{L} v_{\mathrm{L}}(0)-s_{1}\left[i_{\mathrm{L}}(0)-i_{\mathrm{L}}(\infty)\right]}{s_{2}-s_{1}}\right] \end{aligned} \end{aligned}$
Critically Damped ($\alpha=\omega_{0}$) $\begin{aligned} v_{\mathrm{C}}(t) & =\left(B_{1}+B_{2} t\right) e^{-\alpha t}+v_{\mathrm{C}}(\infty) \\ B_{1} & =v_{\mathrm{C}}(0)-v_{\mathrm{C}}(\infty) \\ B_{2} & =\frac{1}{C} i_{\mathrm{C}}(0)+\alpha\left[v_{\mathrm{C}}(0)-v_{\mathrm{C}}(\infty)\right] \end{aligned}$	Critically Damped ($\alpha=\omega_{0}$) $\begin{aligned} i_{\mathrm{L}}(t) & =\left(B_{1}+B_{2} t\right) e^{-\alpha t}+i_{\mathrm{L}}(\infty) \\ B_{1} & =i_{\mathrm{L}}(0)-i_{\mathrm{L}}(\infty) \\ B_{2} & =\frac{1}{L} v_{\mathrm{L}}(0)+\alpha\left[i_{\mathrm{L}}(0)-i_{\mathrm{L}}(\infty)\right] \end{aligned}$
Underdamped ($\alpha<\omega_{0}$) $\begin{aligned} v_{\mathrm{C}}(t) & =e^{-\alpha t}\left(D_{1} \cos \omega_{\mathrm{d}} t+D_{2} \sin \omega_{\mathrm{d}} t\right)+v_{\mathrm{C}}(\infty) \\ D_{1} & =v_{\mathrm{C}}(0)-v_{\mathrm{C}}(\infty) \\ D_{2} & =\frac{\frac{1}{C} i_{\mathrm{C}}(0)+\alpha\left[v_{\mathrm{C}}(0)-v_{\mathrm{C}}(\infty)\right]}{\omega_{\mathrm{d}}} \end{aligned}$	$\begin{aligned} & \text { Underdamped }\left(\alpha<\omega_{0}\right) \\ & \qquad \begin{aligned} i_{\mathrm{L}}(t) & =e^{-\alpha t}\left(D_{1} \cos \omega_{\mathrm{d}} t+D_{2} \sin \omega_{\mathrm{d}} t\right)+i_{\mathrm{L}}(\infty) \\ D_{1} & =i_{\mathrm{L}}(0)-i_{\mathrm{L}}(\infty) \\ D_{2} & =\frac{\frac{1}{L} v_{\mathrm{L}}(0)+\alpha\left[i_{\mathrm{L}}(0)-i_{\mathrm{L}}(\infty)\right]}{\omega_{\mathrm{d}}} \end{aligned} \end{aligned}$

Auxiliary Relations

$$
\begin{aligned}
\alpha & =\left\{\begin{array}{lll}
\frac{R}{2 L} & \text { Series RLC } & \omega_{0}=\frac{1}{\sqrt{L C}} \\
\frac{1}{2 R C} & \text { Parallel RLC } & \omega_{\mathrm{d}}=\sqrt{\omega_{0}^{2}-\alpha^{2}} \\
s_{1} & =-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}} & s_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}}
\end{array}\right.
\end{aligned}
$$

Table 6-2 General solution for second-order circuits for $t \geq 0$.

$x(t)=\text { unknown variable (voltage or current })$ Differential equation: $x^{\prime \prime}+a x^{\prime}+b x=c$ Initial conditions: $x(0)$ and $x^{\prime}(0)$ Final condition: $x(\infty)=\frac{c}{b}$ $\alpha=\frac{a}{2} \quad \omega_{0}=\sqrt{b}$
Overdamped Response $\alpha>\omega_{0}$ $\begin{array}{cl} x(t)=\left[A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}+x(\infty)\right] u(t) \\ s_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}} & s_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}} \\ A_{1}=\frac{x^{\prime}(0)-s_{2}[x(0)-x(\infty)]}{s_{1}-s_{2}} & A_{2}=-\left[\frac{x^{\prime}(0)-s_{1}[x(0)-x(\infty)]}{s_{1}-s_{2}}\right] \end{array}$
Critically Damped $\alpha=\omega_{0}$ $\begin{gathered} x(t)=\left[\left(B_{1}+B_{2} t\right) e^{-\alpha t}+x(\infty)\right] u(t) \\ B_{1}=x(0)-x(\infty) \quad B_{2}=x^{\prime}(0)+\alpha[x(0)-x(\infty)] \end{gathered}$
$\begin{gathered} \text { Underdamped } \alpha<\omega_{0} \\ x(t)=\left[D_{1} \cos \omega_{\mathrm{d}} t+D_{2} \sin \omega_{\mathrm{d}} t+x(\infty)\right] e^{-\alpha t} u(t) \\ D_{2}=\frac{x^{\prime}(0)+\alpha[x(0)-x(\infty)]}{\omega_{\mathrm{d}}}=x(0)-x(\infty) \quad \end{gathered}$

Table 6-3 Component values for the circuit in Fig. 6-19.

Component	Group	Family	Quantity	Description
1	Basic	Resistor	1	1Ω resistor
300 m	Basic	Inductor	1	300 mH inductor
5.33 m	Basic	Capacitor	1	5.33 mF capacitor
SPDT	Basic	Switch	1	Single-pole double-throw (SPDT) switch
DC_POWER	Sources	Power_Sources	1	1 V dc source

Table 6-4 Parts for the Multisim circuit in Fig. 6-23.

Component	Group	Family	Quantity	Description
TS_IDEAL	Basic	Transformer	1	$1 \mathrm{mH}: 1 \mathrm{mH}$ ideal transformer
1 k	Basic	Resistor	1	$1 \mathrm{k} \Omega$ resistor
1μ	Basic	Capacitor	1	$1 \mu \mathrm{~F}$ capacitor
SPDT	Basic	Switch	1	SPDT switch
AC_CURRENT	Sources	Signal_Current_Source	1	$1 \mathrm{~mA}, 5.033 \mathrm{kHz}$

Table 7-1 Useful trigonometric identities (additional relations are given in Appendix D).

$\sin x= \pm \cos \left(x \mp 90^{\circ}\right)$	$(7.7 \mathrm{a})$
$\cos x= \pm \sin \left(x \pm 90^{\circ}\right)$	$(7.7 \mathrm{~b})$
$\sin x=-\sin \left(x \pm 180^{\circ}\right)$	$(7.7 \mathrm{c})$
$\cos x=-\cos \left(x \pm 180^{\circ}\right)$	$(7.7 \mathrm{~d})$
$\sin (-x)=-\sin x$	$(7.7 \mathrm{e})$
$\cos (-x)=\cos x$	$(7.7 \mathrm{f})$
$\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$	$(7.7 \mathrm{~g})$
$\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$	$(7.7 \mathrm{~h})$
$2 \sin x \sin y=\cos (x-y)-\cos (x+y)$	$(7.7 \mathrm{i})$
$2 \sin x \cos y=\sin (x+y)+\sin (x-y)$	$(7.7 \mathrm{j})$
$2 \cos x \cos y=\cos (x+y)+\cos (x-y)$	$(7.7 \mathrm{k})$

Table 7-2 Properties of complex numbers.

Euler's Id $\sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j}$	$\begin{aligned} & \text { tity: } e^{j \theta}=\cos \theta+j \sin \theta \\ & \cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2} \end{aligned}$
$\mathbf{z}=x+j y=\|\mathbf{z}\| e^{j \theta}$	$\mathbf{z}^{*}=x-j y=\|\mathbf{z}\| e^{-j \theta}$
$x=\mathfrak{R e}(\mathbf{z})=\|\mathbf{z}\| \cos \theta$	$\|\mathbf{z}\|=\sqrt{\mathbf{z z}^{*}}=\sqrt{x^{2}+y^{2}}$
$y=\mathfrak{I m}(\mathbf{z})=\|\mathbf{z}\| \sin \theta$	$\theta= \begin{cases}\tan ^{-1}(y / x) & \text { if } x>0 \\ \tan ^{-1}(y / x) \pm \pi & \text { if } x<0 \\ \pi / 2 & \text { if } x=0 \text { and } y>0 \\ -\pi / 2 & \text { if } x=0 \text { and } y<0\end{cases}$
$\mathbf{z}^{n}=\|\mathbf{z}\|^{n} e^{j n \theta}$	$\mathbf{z}^{1 / 2}= \pm\|\mathbf{z}\|^{1 / 2} e^{j \theta / 2}$
$\mathbf{z}_{1}=x_{1}+j y_{1}$	$\mathbf{z}_{2}=x_{2}+j y_{2}$
$\mathbf{z}_{1}=\mathbf{z}_{2}$ iff $x_{1}=x_{2}$ and $y_{1}=y_{2}$	$\mathbf{z}_{1}+\mathbf{z}_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)$
$\mathbf{z}_{1} \mathbf{z}_{2}=\left\|\mathbf{z}_{1}\right\|\left\|\mathbf{z}_{2}\right\| e^{j\left(\theta_{1}+\theta_{2}\right)}$	$\frac{\mathbf{z}_{1}}{\mathbf{z}_{2}}=\frac{\left\|\mathbf{z}_{1}\right\|}{\left\|\mathbf{z}_{2}\right\|} e^{j\left(\theta_{1}-\theta_{2}\right)}$
$\begin{aligned} & -1=e^{j \pi}=e^{-j \pi}=1 \angle \pm 180^{\circ} \\ & j=e^{j \pi / 2}=1 \angle 90^{\circ} \end{aligned}$	$-j=e^{-j \pi / 2}=1 \angle-90^{\circ}$
$\sqrt{j}= \pm e^{j \pi / 4}= \pm \frac{(1+j)}{\sqrt{2}}$	$\sqrt{-j}= \pm e^{-j \pi / 4}= \pm \frac{(1-j)}{\sqrt{2}}$

Table 7-3 Time-domain sinusoidal functions $x(t)$ and their cosine-reference phasor-domain counterparts X, where $x(t)=\mathfrak{R e}\left[\mathbf{X} e^{j \omega t}\right]$.

$x(t)$		X
$A \cos \omega t$	\leftrightarrow	A
$A \cos (\omega t+\phi)$	\leftrightarrow	$A e^{j \phi}$
$-A \cos (\omega t+\phi)$	\leftrightarrow	$A e^{j(\phi \pm \pi)}$
$A \sin \omega t$	\leftrightarrow	$A e^{-j \pi / 2}=-j A$
$A \sin (\omega t+\phi)$	\leftrightarrow	$A e^{j(\phi-\pi / 2)}$
$-A \sin (\omega t+\phi)$	\leftrightarrow	$A e^{j(\phi+\pi / 2)}$
$\frac{d}{d t}(x(t))$	\leftrightarrow	$j \omega \mathbf{X}$
$\frac{d}{d t}[A \cos (\omega t+\phi)]$	\leftrightarrow	$j \omega A e^{j \phi}$
$\int x(t) d t$		$\frac{1}{j \omega} \mathbf{X}$
$\int A \cos (\omega t+\phi) d t$	\leftrightarrow	$\frac{1}{j \omega} A e^{j \phi}$

Table 7-4 Summary of $v-i$ properties for R, L, and C.

Property	R	L	C
$v-i$	$v=R i$	$v=L \frac{d i}{d t}$	$i=C \frac{d v}{d t}$
V-I	$\mathbf{V}=R \mathbf{I}$	$\mathbf{V}=j \omega L \mathbf{I}$	$\mathbf{V}=\frac{\mathbf{I}}{j \omega C}$
Z	R	$j \omega L$	$\frac{1}{j \omega C}$
dc equivalent	R	Short circuit	-O 0- Open circuit
High-frequency equivalent	R	Open circuit	Short circuit
Frequency response			

Table 7-5 Inverting amplifier gain G as a function of oscillation frequency $f . G_{\text {ideal }}=-5$.

$f(\mathrm{~Hz})$	A	G	Error
$0(\mathrm{dc})$	10^{5}	-4.997	0.06%
100	10^{4}	-4.970	0.6%
1 k	10^{3}	-4.714	5.7%
10 k	10^{2}	-3.111	37.8%
100 k	10	-0.707	85.9%
1 M	1	-0.081	98.4%

The error is defined as

$$
\% \text { error }=\left(\frac{G_{\text {ideal }}-G}{G_{\text {ideal }}}\right) \times 100
$$

Table 8-1 Summary of power-related quantities.

Table 8-2 Power factor leading and lagging relationships for a load $\mathbf{Z}=R+j X$.

Load Type	$\phi_{z}=\phi_{v}-\phi_{i}$	I-V Relationship	$p f$
Purely Resistive $(X=0)$	$\phi_{z}=0$	I in phase with \mathbf{V}	1
Inductive $(X>0)$	$0<\phi_{z} \leq 90^{\circ}$	I lags \mathbf{V}	lagging
Purely Inductive $(X>0$ and $R=0)$	$\phi_{z}=90^{\circ}$	I lags \mathbf{V} by 90°	lagging
Capacitive $(X<0)$	$-90^{\circ} \leq \phi_{z}<0$	I leads \mathbf{V}	leading
Purely Capacitive $(X<0$ and $R=0)$	$\phi_{z}=-90^{\circ}$	I leads \mathbf{V} by 90°	leading

Table 9-1 Correspondence between power ratios in natural numbers and their dB values (left table) and between voltage or current ratios and their $d B$ values (right table).

$\frac{P}{P_{0}}$	dB
10^{N}	10 NdB
10^{3}	30 dB
100	20 dB
10	10 dB
4	$\approx 6 \mathrm{~dB}$
2	$\approx 3 \mathrm{~dB}$
1	0 dB
$0.5 \approx$	$\approx-3 \mathrm{~dB}$
$0.25 \approx$	$\approx-6 \mathrm{~dB}$
0.1	$-10 \mathrm{~dB}$
10^{-N}	$-10 \mathrm{NdB}$
$\left\|\frac{\mathbf{V}}{\mathbf{V}_{0}}\right\|$ or $\left\|\frac{\mathbf{I}}{\mathbf{I}_{0}}\right\|$	dB
10^{N}	20 N dB
10^{3}	60 dB
100	40 dB
10	20 dB
4	$\approx 12 \mathrm{~dB}$
2	$\approx 6 \mathrm{~dB}$
1	0 dB
0.5	$\approx-6 \mathrm{~dB}$
0.25	$\approx-12 \mathrm{~dB}$
0.1	$-20 \mathrm{~dB}$
10^{-N}	$-20 \mathrm{NdB}$

Table 9-2 Bode straight-line approximations for magnitude and phase.

Factor	Bode Magnitude	Bode Phase
Constant 20K		$\pm 180^{\circ}$ if $K<0$
	$\longrightarrow \omega$	$\xrightarrow{0^{\circ}} 0^{\circ}$ if $K>0 \quad \omega$
Zero@ Origin $(j \omega)^{N}$	$\text { slope }=20 \mathrm{~N} \mathrm{~dB} / \text { decade }$	$(90 N)^{\circ \Varangle}$ ${ }^{\circ} \longrightarrow \omega$
$\begin{aligned} & \text { Pole@ Origin } 0 \mathrm{~dB} \\ & (j \omega)^{-N} \end{aligned}$	$\text { slope }=-20 N \mathrm{~dB} / \text { decade }$	$\xrightarrow[(-90 N)^{\circ} \star]{0^{\circ}} \omega \omega$
Simple Zero $\left(1+j \omega / \omega_{\mathrm{c}}\right)^{N}$ $0 \mathrm{~dB}$		
Simple Pole $\left(\frac{1}{1+j \omega / \omega_{\mathrm{c}}}\right)^{N}$	slope $=-20 N \mathrm{~dB} /$ decade	
Quadratic Zero $\left[1+j 2 \xi \omega / \omega_{\mathrm{c}}+\left(j \omega / \omega_{\mathrm{c}}\right)^{2}\right]^{N}$ 0 dB -	$\text { slope }=40 N \mathrm{~dB} / \text { decade }$	
Quadratic Pole $\frac{1}{\left[1+j 2 \xi \omega / \omega_{\mathrm{c}}+\left(j \omega / \omega_{\mathrm{c}}\right)^{2}\right]^{N}}$	$\text { slope }=-40 N \mathrm{~dB} / \text { decade }$	

Table 9-3 Attributes of series and parallel RLC bandpass circuits.
RLC Circuit
Transfer Function

$\mathbf{H}=\frac{\mathbf{V}_{\mathrm{R}}}{\mathbf{V}_{\mathrm{s}}}$

$$
\frac{1}{\sqrt{L C}}
$$

$$
\frac{1}{\sqrt{L C}}
$$

$$
\frac{R}{L}
$$

$$
\frac{1}{R C}
$$

Quality Factor, Q
Lower Half-Power Frequency, $\omega_{\mathrm{c}_{1}}$

$$
\left[-\frac{1}{2 Q}+\sqrt{1+\frac{1}{4 Q^{2}}}\right] \omega_{0}
$$

$$
\left[-\frac{1}{2 Q}+\sqrt{1+\frac{1}{4 Q^{2}}}\right] \omega_{0}
$$

Upper Half-Power Frequency, $\omega_{c_{2}} \quad\left[\frac{1}{2 Q}+\sqrt{1+\frac{1}{4 Q^{2}}}\right] \omega_{0} \quad\left[\frac{1}{2 Q}+\sqrt{1+\frac{1}{4 Q^{2}}}\right] \omega_{0}$

Notes: (1) The expression for Q of the series RLC circuit is the inverse of that for Q of the parallel circuit.
(2) For $Q \geq 10, \omega_{\mathrm{c}_{1}} \approx \omega_{0}-\frac{B}{2}$, and $\omega_{\mathrm{c}_{2}} \approx \omega_{0}+\frac{B}{2}$.

Table 10-1 Balanced networks.

Table 12-1 Properties of the Laplace transform $\left(f(t)=0\right.$ for $\left.t<0^{-}\right)$.

Property	$f(t)$		$\mathbf{F}(\mathbf{s})=\mathscr{L}[f(t)]$
1. Multiplication by constant $K f(t) \quad \longleftrightarrow$			$K \mathbf{F}(\mathbf{s})$
2. Linearity $\quad K_{1} f$	$K_{1} f_{1}(t)+K_{2} f_{2}(t)$	\leftrightarrow	$K_{1} \mathbf{F}_{1}(\mathbf{s})+K_{2} \mathbf{F}_{2}(\mathbf{s})$
3. Time scaling	$f(a t), \quad a>0$	\leftrightarrow	$\frac{1}{a} \mathbf{F}\left(\frac{\mathbf{s}}{a}\right)$
4. Time shift $\quad f(t$	$f(t-T) u(t-T)$	\leftrightarrow	$e^{-T \mathbf{s}} \mathbf{F}(\mathbf{s}), \quad T \geq 0$
5. Frequency shift	$e^{-a t} f(t)$	\rightarrow	$\mathbf{F}(\mathbf{s}+a)$
6. Time 1st derivative	$f^{\prime}=\frac{d f}{d t}$	\leftrightarrow	$\mathbf{s} \mathbf{F}(\mathbf{s})-f\left(0^{-}\right)$
7. Time 2nd derivative	tive $\quad f^{\prime \prime}=\frac{d^{2} f}{d t^{2}}$	\leftrightarrow	$\begin{gathered} \mathbf{s}^{2} \mathbf{F}(\mathbf{s})-\mathbf{s} f\left(0^{-}\right) \\ -f^{\prime}\left(0^{-}\right) \end{gathered}$
8. Time integral	$\int_{0^{-}}^{t} f(\tau) d \tau$		$\frac{1}{\mathbf{S}} \mathbf{F}(\mathbf{s})$
9. Frequency derivative	ative $\quad t f(t)$	\leftarrow	$-\frac{d}{d \mathbf{s}} \mathbf{F}(\mathbf{s})$
10. Frequency integral	gral $\frac{f(t)}{t}$	\leftrightarrow	$\int_{\mathbf{s}}^{\infty} \mathbf{F}\left(\mathbf{s}^{\prime}\right) d \mathbf{s}^{\prime}$

Table 12-2 Examples of Laplace transform pairs for $T \geq 0$. Note that multiplication by $u(t)$ guarantees that $f(t)=0$ for $t<0^{-}$.

Note: $(n-1)!=(n-1)(n-2) \ldots 1$.

Table 12-3 Transform pairs for four types of poles.

Pole	$\mathbf{F}(\mathbf{s})$	$f(t)$
1. Distinct real	$\frac{A}{\mathbf{s}+a}$	$A e^{-a t} u(t)$
2. Repeated real	$\frac{A}{(\mathbf{s}+a)^{n}}$	$A \frac{t^{n-1}}{(n-1)!} e^{-a t} u(t)$
3. Distinct complex	$\left[\frac{A e^{j \theta}}{\mathbf{s}+a+j b}+\frac{A e^{-j \theta}}{\mathbf{s}+a-j b}\right]$	$2 A e^{-a t} \cos (b t-\theta) u(t)$
4. Repeated complex	$\left[\frac{A e^{j \theta}}{(\mathbf{s}+a+j b)^{n}}+\frac{A e^{-j \theta}}{(\mathbf{s}+a-j b)^{n}}\right]$	$\frac{2 A t^{n-1}}{(n-1)!} e^{-a t} \cos (b t-\theta) u(t)$

Table 12-4 Circuit models for R, L, and C in the s-domain.

Time-Domain	s-Domain		
Resistor	$\begin{gathered} \mathbf{I}\}^{+}+{ }^{+} \\ R \\ \mathbf{V}=R \mathbf{I} \end{gathered}$		
Inductor $\begin{aligned} v_{\mathrm{L}} & =L \frac{d i_{\mathrm{L}}}{d t} \\ i_{\mathrm{L}} & =\frac{1}{L} \int_{0^{-}}^{t} v_{\mathrm{L}} d t+i_{\mathrm{L}}\left(0^{-}\right) \end{aligned}$	$\mathbf{V}_{\mathrm{L}}=\mathbf{s} L \mathbf{I}_{\mathrm{L}}-L i_{\mathrm{L}}\left(0^{-}\right)$	OR	$\mathbf{I}_{\mathrm{L}}=\frac{\mathbf{V}_{\mathbf{L}}}{\mathbf{s} L}+\frac{i_{\mathrm{L}}\left(0^{-}\right)}{\mathbf{s}}$
Capacitor $\begin{aligned} i_{\mathrm{C}} & =C \frac{d v_{\mathrm{C}}}{d t} \\ v_{\mathrm{C}} & =\frac{1}{C} \int_{0^{-}}^{t} i_{\mathrm{C}} d t+v_{\mathrm{C}}\left(0^{-}\right) \end{aligned}$	$\mathbf{v}_{\mathrm{C}}=\frac{\mathbf{I}_{\mathrm{C}}}{\mathbf{s} C}+\frac{v_{\mathrm{C}}\left(0^{-}\right)}{\mathbf{s}}$	OR	$\mathbf{I}_{\mathrm{C}}=\mathbf{s} C \mathbf{V}_{\mathrm{C}}-C v_{\mathrm{C}}\left(0^{-}\right)$

Table 13-1 Trigonometric integral properties for any integers m and n. The integration period $T=2 \pi / \omega_{0}$.

Property Integral		
1	$\int_{0}^{T} \sin n \omega_{0} t d t=0$	
2	$\int_{0}^{T} \cos n \omega_{0} t d t=0$	
3	$\int_{0}^{T} \sin n \omega_{0} t \sin m \omega_{0} t d t=0$,	$n \neq m$
4	$\int_{0}^{T} \cos n \omega_{0} t \cos m \omega_{0} t d t=0$,	$n \neq m$
5	$\int_{0}^{T} \sin n \omega_{0} t \cos m \omega_{0} t d t=0$	
	$\int_{0}^{T} \sin ^{2} n \omega_{0} t d t=T / 2$	
	$\int_{0}^{T} \cos ^{2} n \omega_{0} t d t=T / 2$	
Note: All integral properties remain valid when the arguments $n \omega_{0} t$ and $m \omega_{0} t$ are phase shifted by a constant angle ϕ_{0}. Thus, Property 1 , for example, becomes $\int_{0}^{T} \sin \left(n \omega_{0} t+\phi_{0}\right) d t=0$, and Property 5 becomes $\int_{0}^{T} \sin \left(n \omega_{0} t+\phi_{0}\right) \cos \left(m \omega_{0} t+\phi_{0}\right) d t=0$.		

Table 13-2 Fourier series expressions for a select set of periodic waveforms.

	Waveform	Fourier Series
1. Square Wave		$f(t)=\sum_{n=1}^{\infty} \frac{4 A}{n \pi} \sin \left(\frac{n \pi}{2}\right) \cos \left(\frac{2 n \pi t}{T}\right)$
2. Time-Shifted Square Wave		$f(t)=\sum_{\substack{n=1 \\ n=\text { odd }}}^{\infty} \frac{4 A}{n \pi} \sin \left(\frac{2 n \pi t}{T}\right)$
3. Pulse Train		$f(t)=\frac{A \tau}{T}+\sum_{n=1}^{\infty} \frac{2 A}{n \pi} \sin \left(\frac{n \pi \tau}{T}\right) \cos \left(\frac{2 n \pi t}{T}\right)$
4. Triangular Wave		$f(t)=\sum_{\substack{n=1 \\ n=\text { odd }}}^{\infty} \frac{8 A}{n^{2} \pi^{2}} \cos \left(\frac{2 n \pi t}{T}\right)$
5. Shifted Triangular Wave		$f(t)=\sum_{\substack{n=1 \\ n=\text { odd }}}^{\infty} \frac{8 A}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right) \sin \left(\frac{2 n \pi t}{T}\right)$
6. Sawtooth		$f(t)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 A}{n \pi} \sin \left(\frac{2 n \pi t}{T}\right)$
7. Backward Sawtooth		$f(t)=\frac{A}{2}+\sum_{n=1}^{\infty} \frac{A}{n \pi} \sin \left(\frac{2 n \pi t}{T}\right)$
8. Full-Wave Rectified Sinusoid		$f(t)=\frac{2 A}{\pi}+\sum_{n=1}^{\infty} \frac{4 A}{\pi\left(1-4 n^{2}\right)} \cos \left(\frac{2 n \pi t}{T}\right)$
9. Half-Wave Rectified Sinusoid		$f(t)=\frac{A}{\pi}+\frac{A}{2} \sin \left(\frac{2 \pi t}{T}\right)+\sum_{\substack{n=2 \\ n=\text { even }}}^{\infty} \frac{2 A}{\pi\left(1-n^{2}\right)} \cos \left(\frac{2 n \pi t}{T}\right)$

Table 13-3 Fourier series representations for a periodic function $f(t)$.

Cosine/Sine	Amplitude/Phase	Complex Exponential
$f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)$	$f(t)=a_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega_{0} t+\phi_{n}\right)$	$f(t)=\sum_{n=-\infty}^{\infty} \mathbf{c}_{n} e^{j n \omega_{0} t}$
$a_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t$	$A_{n} e^{j \phi_{n}}=a_{n}-j b_{n}$	$\mathbf{c}_{n}=\left\|\mathbf{c}_{n}\right\| e^{j \phi_{n}} ; \mathbf{c}_{-n}=\mathbf{c}_{n}^{*}$
$a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos n \omega_{0} t d t$	$A_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}$	$\left\|\mathbf{c}_{n}\right\|=A_{n} / 2 ; c_{0}=a_{0}$
$b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin n \omega_{0} t d t$	$\phi_{n}= \begin{cases}-\tan ^{-1}\left(\frac{b_{n}}{a_{n}}\right), & a_{n}>0 \\ \pi-\tan ^{-1}\left(\frac{b_{n}}{a_{n}}\right), & a_{n}<0\end{cases}$	$\mathbf{c}_{n}=\frac{1}{T} \int_{0}^{T} f(t) e^{-j n \omega_{0} t} d t$
$a_{0}=c_{0} ; a_{n}=A_{n} \cos \phi_{n} ; b_{n}=-A_{n} \sin \phi_{n} ;$	$=\frac{1}{2}\left(a_{n}-j b_{n}\right)$	

Table 13-4 Examples of Fourier transform pairs. Note that constant $a \geq 0$.

Table 13-5 Major properties of the Fourier transform.

Property	$f(t)$		$\mathbf{F}(\omega)=\mathscr{F}[f(t)]$
1. Multiplication by a constant	$K f(t)$	\leftrightarrow	$K \mathbf{F}(\omega)$
2. Linearity	$K_{1} f_{1}(t)+K_{2} f_{2}(t)$	\leftrightarrow	$K_{1} \mathbf{F}_{1}(\omega)+K_{2} \mathbf{F}_{2}(\omega)$
3. Time scaling	$f(a t)$	\leftrightarrow	$\frac{1}{\|a\|} \mathbf{F}\left(\frac{\omega}{a}\right)$
4. Time shift	$f\left(t-t_{0}\right)$	\leftrightarrow	$e^{-j \omega t_{0}} \mathbf{F}(\omega)$
5. Frequency shift	$e^{j \omega_{0} t} f(t)$	\leftrightarrow	$\mathbf{F}\left(\omega-\omega_{0}\right)$
6. Time 1st derivative	$f^{\prime}=\frac{d f}{d t}$	\leftrightarrow	$j \omega \mathbf{F}(\omega)$
7. Time nth derivative	$\frac{d^{n} f}{d t^{n}}$	\leftrightarrow	$(j \omega)^{n} \mathbf{F}(\omega)$
8. Time integral	$\int_{-\infty}^{t} f(t) d t$	\leftrightarrow	$\frac{\mathbf{F}(\omega)}{j \omega}+\pi \mathbf{F}(0) \boldsymbol{\delta}(\omega)$
9. Frequency derivative	$t^{n} f(t)$	\leftrightarrow	$(j)^{n} \frac{d^{n} \mathbf{F}(\omega)}{d \omega^{n}}$
10. Modulation	$\cos \omega_{0} t f(t)$	\leftrightarrow	$\frac{1}{2}\left[\mathbf{F}\left(\omega-\omega_{0}\right)+\mathbf{F}\left(\omega+\omega_{0}\right)\right]$
11. Convolution in t	$f_{1}(t) * f_{2}(t)$	\leftrightarrow	$\mathbf{F}_{1}(\omega) \mathbf{F}_{2}(\omega)$
12. Convolution in ω	$f_{1}(t) f_{2}(t)$	\leftrightarrow	$\frac{1}{2 \pi} \mathbf{F}_{1}(\omega) * \mathbf{F}_{2}(\omega)$

Table 13-6 Methods of solution.

Input $x(t)$			Solution Method

Table 13-7 Multisim circuits of the $\Sigma \Delta$ modulator.

Multisim Circuit	Description and Notes
	Subtractor: This is a difference amplifier (following Table 4-3) with a voltage gain of 1 . VPLUS and VMINUS are the extremes of the analog input (in the complete circuit, they are set to $\pm 12 \mathrm{~V}$).
	Integrator: This circuit consists of an inverting integrator amplifier (Section 5-6.1) and an inverting amplifier (following Table 4-3) with a voltage gain of 1 (to remove the integrator's negative sign).
	comparator is a simple op amp with no Since the internal voltage gain A of the op ion 4-1.2), any positive difference between the inverting inputs immediately drives the ${ }_{\mathrm{DD}}$; a negative difference drives the amplifier set to the desired digital voltage level (5 V , plete circuit in Fig. 13-22).
	\log Converter (DAC): The DAC is very rator. The input voltage is compared to a between 0 and V_{DD}; this has the effect of of V_{DD} into an output voltage of VPLUS/2 and an input voltage of 0 V into an output 2 (-6 V in Fig. 13-22).

[^0]: (- Sum of all currents entering a node $=0$ $[i=$ " + " if entering; $i=$ "-" if leaving]

 - Sum of all currents leaving a node $=0$ $[i="+"$ if leaving; $i=$ " - " if entering]
 - Total of currents entering $=$ Total of currents leaving

 KVL $\left\{\begin{array}{c}\bullet \\ \begin{array}{c}\text { Sum of voltages around closed loop }=0 \\ {[v="+" \text { if }+ \text { side encountered first }} \\ \text { in clockwise direction }]\end{array} \\ \bullet \begin{array}{c}\text { Total voltage rise }=\text { Total voltage drop }\end{array}\end{array}\right.$

