# Circuits

by

# Fawwaz T. Ulaby, Michel M. Maharbiz, Cynthia M. Furse

Tables

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

C 2015 National Technology Press

- Chapter 1: Circuit Terminology
- Chapter 2: Resisitive Circuits
- Chapter 3: Analysis Techniques
- Chapter 4: Operational Amplifiers
- Chapter 5: RC and RL First-Order Circuits
- Chapter 6: RLC Circuits
- Chapter 7: ac Analysis
- Chapter 8: ac Power
- Chapter 9: Frequency Response of Circuits and Filters
- Chapter 10: Three-Phase Circuits
- Chapter 11: Magnetically Coupled Circuits
- Chapter 12: Circuit Analysis by Laplace Transform
- Chapter 13: Fourier Analysis Technique

# Chapter 1 Circuit Terminology

#### **Tables**

- Table 1-1: Fundamental and electrical SI units.
- Table 1-2:
   Multiple and submultiple prefixes.
- Table 1-3:
   Symbols for common circuit elements.
- Table 1-4:
   Circuit terminology.
- Table 1-5:
   Voltage and current sources.

# Chapter 2 Resistive Circuits

#### **Tables**

 Table 2-1: Conductivity and resistivity of some common materials at 20 °C.

- Table 2-2: Diameter *d* of wires, according to the American Wire Gauge (AWG) system.
- Table 2-3:
   Common resistor terminology.
- Table 2-4: Equally valid, multiple statements of Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL).

 Table 2-5: Equivalent circuits.

# Chapter 3 Analysis Techniques

### **Tables**

 Table 3-1:
 Properties of Thévenin/Norton analysis techniques.

 Table 3-2:
 Summary of circuit analysis methods.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

### Chapter 4 Operational Amplifiers

#### **Tables**

- Table 4-1: Characteristics and typical ranges of op-amp parameters. The rightmost column represents the values assumed by the ideal op-amp model.
- Table 4-2: Characteristics of the ideal op-amp model.
- Table 4-3:
   Summary of op-amp circuits.
- Table 4-4: Correspondence between binary sequence and decimal value for a 4-bit digital signal and output of a DAC with G = -0.5.
- Table 4-5: List of Multisim components for the circuit in Fig. 4-35.
- Table 4-6: Components for the circuit in Fig. 4-37.

### Chapter 5 RC and RL First-Order Circuits

#### **Tables**

 Table 5-1: Common nonperiodic waveforms.

- **Table 5-2:** Relative electrical permittivity of common insulators:  $\varepsilon_r = \varepsilon/\varepsilon_0$  and  $\varepsilon_0 = 8.854 \times 10^{-12}$  F/m.
- Table 5-3: Relative magnetic permeability of materials,  $\mu_r = \mu/\mu_0$  and  $\mu_0 = 4\pi \times 10^{-7}$  H/m.
- Table 5-4: Basic properties of *R*, *L*, and *C*.

 Table 5-5: Response forms of basic first-order circuits.

Table 5-6: Multisim component list for the circuit in Fig. 5-52.

# Chapter 6 RLC Circuits

#### **Tables**

**Table 6-1:** Step response of RLC circuits for  $t \ge 0$ .

**Table 6-2:** General solution for second-order circuits for  $t \ge 0$ .

Table 6-3: Component values for the circuit in Fig. 6-19.

 Table 6-4:
 Parts for the Multisim circuit in Fig. 6-23.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

### Chapter 7 ac Analysis

#### **Tables**

Table 7-1: Useful trigonometric identities (additional relations are given in Appendix D).

- Table 7-2: Properties of complex numbers.
- **Table 7-3:** Time-domain sinusoidal functions x(t) and their cosine-reference phasor-domain counterparts **X**, where  $x(t) = \Re \mathbf{e} [\mathbf{X} e^{j\omega t}]$ .

**Table 7-4:** Summary of v-*i* properties for *R*, *L*, and *C*.

**Table 7-5:** Inverting amplifier gain G as a function of oscillation frequency f.  $G_{\text{ideal}} = -5$ .

# Chapter 8 ac Power

# **Tables**

 Table 8-1: Summary of power-related quantities.

**Table 8-2:** Power factor leading and lagging relationships for a load  $\mathbf{Z} = R + jX$ .

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

### Chapter 9 Frequency Response of Circuits and Filters

#### **Tables**

- Table 9-1: Correspondence between power ratios in natural numbers and their dB values (left table) and between voltage or current ratios and their dB values (right table).
- Table 9-2: Bode straight-line approximations for magnitude and phase.
- Table 9-3: Attributes of series and parallel RLC bandpass circuits.

# Chapter 10 Three-Phase Circuits

### **Tables**

Table 10-1: Balanced networks.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

# Chapter 11 Magnetically Coupled Circuits

# **Tables**

There are no tables in this chapter.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

# Chapter 12 Circuit Analysis by Laplace Transform

#### **Tables**

**Table 12-1:** Properties of the Laplace transform  $(f(t) = 0 \text{ for } t < 0^{-})$ .

Table 12-2: Examples of Laplace transform pairs for  $T \ge 0$ . Note that multiplication by u(t) guarantees that f(t) = 0 for  $t < 0^-$ .

 Table 12-3:
 Transform pairs for four types of poles.

Table 12-4: Circuit models for *R*, *L*, and *C* in the s-domain.

# Chapter 13 Fourier Analysis Technique

#### **Tables**

- **Table 13-1:** Trigonometric integral properties for any integers *m* and *n*. The integration period  $T = 2\pi/\omega_0$ .
- Table 13-2: Fourier series expressions for a select set of periodic waveforms.
- **Table 13-3:** Fourier series representations for a periodic function f(t).
- **Table 13-4:** Examples of Fourier transform pairs. Note that constant  $a \ge 0$ .
- Table 13-5: Major properties of the Fourier transform.
- Table 13-6:
   Methods of solution.
- **Table 13-7:** Multisim circuits of the  $\Sigma\Delta$  modulator.

| Table 1-1         Fundamental | and e | electrical SI | units. |
|-------------------------------|-------|---------------|--------|
|-------------------------------|-------|---------------|--------|

| Dimension           | Unit     | Symbol |
|---------------------|----------|--------|
| Fundamental:        |          |        |
| Length              | meter    | m      |
| Mass                | kilogram | kg     |
| Time                | second   | S      |
| Electric charge     | coulomb  | C      |
| Temperature         | kelvin   | K      |
| Amount of substance | mole     | mol    |
| Luminous intensity  | candela  | cd     |
| Electrical:         |          |        |
| Current             | ampere   | А      |
| Voltage             | volt     | V      |
| Resistance          | ohm      | Ω      |
| Capacitance         | farad    | F      |
| Inductance          | henry    | Н      |
| Power               | watt     | W      |
| Frequency           | hertz    | Hz     |

| Prefix | Symbol | Magnitude        |
|--------|--------|------------------|
| exa    | Е      | $10^{18}$        |
| peta   | Р      | $10^{15}$        |
| tera   | Т      | $10^{12}$        |
| giga   | G      | 10 <sup>9</sup>  |
| mega   | М      | 10 <sup>6</sup>  |
| kilo   | k      | $10^{3}$         |
| milli  | m      | 10 <sup>-3</sup> |
| micro  | μ      | $10^{-6}$        |
| nano   | n      | $10^{-9}$        |
| pico   | р      | $10^{-12}$       |
| femto  | f      | $10^{-15}$       |
| atto   | а      | $10^{-18}$       |

 Table 1-2
 Multiple and submultiple prefixes.



 Table 1-3 Symbols for common circuit elements.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

#### Table 1-4 Circuit terminology.

*Node:* An electrical connection between two or more elements.

*Ordinary node:* An electrical connection node that connects to only two elements.

*Extraordinary node:* An electrical connection node that connects to three or more elements.

*Branch:* Trace between two consecutive nodes with only one element between them.

*Path:* Continuous sequence of branches with no node encountered more than once.

*Extraordinary path:* Path between two adjacent extraordinary nodes.

*Loop:* Closed path with the same start and end node.

*Independent loop:* Loop containing one or more branches not contained in any other independent loop.

*Mesh:* Loop that encloses no other loops.

*In series:* Elements that share the same current. They have only ordinary nodes between them.

*In parallel:* Elements that share the same voltage. They share two extraordinary nodes.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits





| Material                  | Conductivity $\sigma$     | Resistivity $\rho$     |
|---------------------------|---------------------------|------------------------|
|                           | (5/11)                    | (32-111)               |
| Conductors                | -                         | 0                      |
| Silver                    | $6.17 \times 10^{7}$      | $1.62 \times 10^{-8}$  |
| Copper                    | $5.81 \times 10^{7}$      | $1.72 \times 10^{-8}$  |
| Gold                      | $4.10 \times 10^{7}$      | $2.44 	imes 10^{-8}$   |
| Aluminum                  | $3.82 \times 10^{7}$      | $2.62 	imes 10^{-8}$   |
| Iron                      | $1.03 \times 10^{7}$      | $9.71	imes10^{-8}$     |
| Mercury (liquid)          | $1.04 	imes 10^6$         | $9.58 	imes 10^{-8}$   |
| Semiconductors            |                           |                        |
| Carbon (graphite)         | $7.14 \times 10^4$        | $1.40 	imes 10^{-5}$   |
| Pure germanium            | 2.13                      | 0.47                   |
| Pure silicon              | $4.35 \times 10^{-4}$     | $2.30 \times 10^{3}$   |
| Insulators                |                           |                        |
| Paper                     | $\sim 10^{-10}$           | $\sim 10^{10}$         |
| Glass                     | $\sim 10^{-12}$           | $\sim 10^{12}$         |
| Teflon                    | $\sim 3.3 	imes 10^{-13}$ | $\sim 3 	imes 10^{12}$ |
| Porcelain                 | $\sim 10^{-14}$           | $\sim 10^{14}$         |
| Mica                      | $\sim 10^{-15}$           | $\sim 10^{15}$         |
| Polystyrene               | $\sim 10^{-16}$           | $\sim 10^{16}$         |
| Fused quartz              | $\sim 10^{-17}$           | $\sim 10^{17}$         |
| Common materials          |                           | _                      |
| Distilled water           | $5.5 \times 10^{-6}$      | $1.8 \times 10^{5}$    |
| Drinking water            | $\sim 5 	imes 10^{-3}$    | $\sim 200$             |
| Sea water                 | 4.8                       | 0.2                    |
| Graphite                  | $1.4 \times 10^{-5}$      | $71.4 \times 10^{3}$   |
| Rubber                    | $1 \times 10^{-13}$       | $1 \times 10^{13}$     |
| <b>Biological tissues</b> | 1.5                       | 0.67                   |
| Blood                     | $\sim 1.5$                | $\sim 0.67$            |
| Iviuscie                  | $\sim 1.5$                | $\sim 0.67$            |
| rat                       | $\sim 0.1$                | 10                     |

Table 2-1 Conductivity and resistivity of some common materials at 20  $^\circ C.$ 

| Table | 2-2   | Diameter   | d  | of | wires,   | according | to | the |
|-------|-------|------------|----|----|----------|-----------|----|-----|
| Ameri | can W | /ire Gauge | (A | W( | G) syste | m.        |    |     |

| AWG Size Designation | Diameter d (mm) |
|----------------------|-----------------|
| 0                    | 8.3             |
| 2                    | 6.5             |
| 4                    | 5.2             |
| 6                    | 4.1             |
| 10                   | 2.6             |
| 14                   | 1.6             |
| 18                   | 1.0             |
| 20                   | 0.8             |

#### Table 2-3 Common resistor terminology.

| <i>R</i> sensitive to temperature     |
|---------------------------------------|
| <i>R</i> sensitive to pressure        |
| <i>R</i> sensitive to light intensity |
| 2-terminal variable resistor          |
| 3-terminal variable resistor          |
|                                       |

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

Table 2-4Equally valid, multiple statements ofKirchhoff'sCurrent Law (KCL) and Kirchhoff'sVoltage Law (KVL).





Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

| To Determine                                             | Method                                          | Can Circuit Contain Dependent Sources? | Relationship                                        |  |
|----------------------------------------------------------|-------------------------------------------------|----------------------------------------|-----------------------------------------------------|--|
| $\upsilon_{\mathrm{Th}}$                                 | Open-circuit υ                                  | Yes                                    | $v_{Th} = v_{oc}$                                   |  |
| $\upsilon_{\mathrm{Th}}$                                 | Short-circuit $i$ (if $R_{\text{Th}}$ is known) | Yes                                    | $v_{\mathrm{Th}} = R_{\mathrm{Th}} i_{\mathrm{sc}}$ |  |
| $R_{\mathrm{Th}}$                                        | Open/short                                      | Yes                                    | $R_{\rm Th} = v_{\rm oc}/i_{\rm sc}$                |  |
| $R_{\mathrm{Th}}$                                        | Equivalent <i>R</i>                             | No                                     | $R_{\rm Th} = R_{\rm eq}$                           |  |
| R <sub>Th</sub>                                          | External source                                 | Yes                                    | $R_{\rm Th} = v_{\rm ex}/i_{\rm ex}$                |  |
| $i_{ m N}=arphi_{ m Th}/R_{ m Th};$ $R_{ m N}=R_{ m Th}$ |                                                 |                                        |                                                     |  |

 Table 3-1
 Properties of Thévenin/Norton analysis techniques.

| Method                                           | Common Use                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ohm's law                                        | Relates <i>V</i> , <i>I</i> , <i>R</i> . Used with all other methods to convert $V \Leftrightarrow I$ .                                                                                                                                                                                                              |
| $R, G$ in series and $\parallel$                 | Combine to simplify circuits. $R$ in series adds, and is most often used. $G$ in $\parallel$ adds, so may be used when much of the circuit is in parallel.                                                                                                                                                           |
| Y-Δ or Π-T                                       | Convert resistive networks that are not in series or in $\parallel$ into forms that can often be combined in series or in $\parallel$ . Also simplifies analysis of bridge circuits.                                                                                                                                 |
| Voltage/current<br>dividers                      | Common circuit configurations used for many applications, as well as handy analysis tools. Dividers can also be used as combiners when used "backwards."                                                                                                                                                             |
| Kirchhoff's laws<br>(KVL/KCL)                    | Solve for branch currents. Often used to derive other methods.                                                                                                                                                                                                                                                       |
| Node-voltage<br>method                           | Solves for node voltages. Probably the most commonly used method because (1) node voltages are easy to measure, and (2) there are usually fewer nodes than branches and therefore fewer unknowns (smaller matrix) than KVL/KCL.                                                                                      |
| Mesh-current method                              | Solves for mesh currents. Fewer unknowns than KVL/KCL, approximately the same number of unknowns as node voltage method. Less commonly used, because mesh currents seem less intuitive, but useful when combining additional blocks in cascade.                                                                      |
| Node-voltage<br>by-inspection<br>method          | Quick, simplified way of analyzing circuits. Very commonly used for quick analysis in practice. Limited to circuits containing only independent current sources.                                                                                                                                                     |
| Mesh-current<br>by-inspection<br>method          | Quick, simplified way of analyzing circuits. Very commonly used for quick analysis in practice. Limited to circuits containing only independent voltage sources.                                                                                                                                                     |
| Superposition                                    | Simplifies circuits with multiple sources. Commonly used for both calculation and measurement.                                                                                                                                                                                                                       |
| Source transfor-<br>mation                       | Simplifies circuits with multiple sources. Commonly used for both calculation/design and measurement/test applications.                                                                                                                                                                                              |
| Thévenin<br>and Norton<br>equivalents            | Very often used to simplify circuits in both calculation and measurement applications.<br>Also used to analyze cascaded systems. Thévenin is the more commonly used form, but<br>Norton is often handy for analyzing parallel circuits. Source transformation allows easy<br>conversion between Thévenin and Norton. |
| Input/output<br>resistance<br>$(R_{in}/R_{out})$ | Commonly used to evaluate when cascaded circuits can be analyzed individually or when full circuit analysis or a buffer is needed.                                                                                                                                                                                   |

#### Table 3-2 Summary of circuit analysis methods.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

 Table 4-1
 Characteristics and typical ranges of op-amp parameters. The rightmost column represents the values assumed by the ideal op-amp model.

| <b>Op-Amp Characteristics</b>                                                                                  | Parameter                                                             | <b>Typical Range</b>                                            | Ideal Op Amp                 |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|
| <ul> <li>Linear input-output response</li> <li>High input resistance</li> <li>Low output resistance</li> </ul> | Open-loop gain A<br>Input resistance $R_i$<br>Output resistance $R_0$ | $10^4$ to $10^8$ (V/V)<br>$10^6$ to $10^{13}$ Ω<br>1 to $100$ Ω | $\infty \Omega \Omega$       |
| • Very high gain                                                                                               | Supply voltage $V_{cc}$                                               | 5 to 24 V                                                       | As specified by manufacturer |

 Table 4-2
 Characteristics of the ideal op-amp model.

#### **Ideal Op Amp**

- Current constraint  $i_p = i_n = 0$  Voltage constraint  $v_p = v_n$   $A = \infty$   $R_i = \infty$   $R_o = 0$

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits



Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

| Table 4-4  | Correspondence between binary sequence         |
|------------|------------------------------------------------|
| and decima | al value for a 4-bit digital signal and output |
| of a DAC w | with $G = -0.5$ .                              |

| $V_1V_2V_3V_4$ | <b>Decimal Value</b> | DAC Output (V) |
|----------------|----------------------|----------------|
| 0000           | 0                    | 0              |
| 0001           | 1                    | -0.5           |
| 0010           | 2                    | -1             |
| 0011           | 3                    | -1.5           |
| 0100           | 4                    | -2             |
| 0101           | 5                    | -2.5           |
| 0110           | 6                    | -3             |
| 0111           | 7                    | -3.5           |
| 1000           | 8                    | -4             |
| 1001           | 9                    | -4.5           |
| 1010           | 10                   | -5             |
| 1011           | 11                   | -5.5           |
| 1100           | 12                   | -6             |
| 1101           | 13                   | -6.5           |
| 1110           | 14                   | -7             |
| 1111           | 15                   | -7.5           |

| Component         | Group   | Family            | Quantity | Description                   |
|-------------------|---------|-------------------|----------|-------------------------------|
| 1.5 k             | Basic   | Resistor          | 7        | 1.5 kΩ resistor               |
| 15 k              | Basic   | Resistor          | 2        | 15 kΩ resistor                |
| 3 k               | Basic   | Variable resistor | 1        | $3 \text{ k}\Omega$ resistor  |
| OP_AMP_5T_VIRTUAL | Analog  | Analog_Virtual    | 3        | Ideal op amp with 5 terminals |
| AC_POWER          | Sources | Power_Sources     | 1        | 1 V ac source, 60 Hz          |
| VDD               | Sources | Power_Sources     | 1        | 15 V supply                   |
| VSS               | Sources | Power_Sources     | 1        | -15 V supply                  |

 Table 4-5
 List of Multisim components for the circuit in Fig. 4-35.

| Component | Group       | Family              | Quantity | Description         |
|-----------|-------------|---------------------|----------|---------------------|
| MOS_N     | Transistors | Transistors_VIRTUAL | 1        | 3-terminal N-MOSFET |
| MOS_P     | Transistors | Transistors_VIRTUAL | 1        | 3-terminal P-MOSFET |
| VDD       | Sources     | Power Sources       | 1        | 2.5 V supply        |
| GND       | Sources     | Power Sources       | 2        | Ground node         |

Table 4-6Components for the circuit in Fig. 4-37.

| waveform    | Expression                                                                                                                      | General Shape                                                                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Step        | $u(t-T) = \begin{cases} 0 & \text{for } t < T \\ 1 & \text{for } t > T \end{cases}$                                             | $1 + \underbrace{u(t-T)}_{0}  t$                                             |
| Ramp        | r(t-T) = (t-T) u(t-T)                                                                                                           | Slope = 1<br>T $T$ $T$                                                       |
| Rectangle   | $\operatorname{rect}\left(\frac{t-T}{\tau}\right) = u(t-T_1) - u(t-T_2)$ $T_1 = T - \frac{\tau}{2} ;  T_2 = T + \frac{\tau}{2}$ | $1 + \frac{\operatorname{rect}\left(\frac{t-T}{\tau}\right)}{0  T_1  T_2} t$ |
| Exponential | $\exp[-(t-T)/\tau] u(t-T)$                                                                                                      | $1 \qquad \exp[-(t-T)/\tau] u(t-T)$ $0 \qquad T$                             |

#### Table 5-1 Common nonperiodic waveforms.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

| Table 5-2   | Relative electrical permittivity of common                                                         |
|-------------|----------------------------------------------------------------------------------------------------|
| insulators: | $\varepsilon_{\rm r} = \varepsilon/\varepsilon_0$ and $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m. |

| Material           | <b>Relative Permittivity</b> $\varepsilon_r$ |
|--------------------|----------------------------------------------|
| Air (at sea level) | 1.0006                                       |
| Teflon             | 2.1                                          |
| Polystyrene        | 2.6                                          |
| Paper              | 2–4                                          |
| Glass              | 4.5–10                                       |
| Quartz             | 3.8–5                                        |
| Bakelite           | 5                                            |
| Mica               | 5.4–6                                        |
| Porcelain          | 5.7                                          |

Table 5-3 Relative magnetic permeability of materials,  $\mu_r = \mu/\mu_0$  and  $\mu_0 = 4\pi \times 10^{-7}$  H/m.

| Material             | <b>Relative Permeability</b> $\mu_r$ |
|----------------------|--------------------------------------|
| All Dielectrics and  |                                      |
| Non-Ferromagnetic    |                                      |
| Metals               | pprox 1.0                            |
| Ferromagnetic Metals |                                      |
| Cobalt               | 250                                  |
| Nickel               | 600                                  |
| Mild steel           | 2,000                                |
| Iron (pure)          | 4,000–5,000                          |
| Silicon iron         | 7,000                                |
| Mumetal              | $\sim 100,000$                       |
| Purified iron        | $\sim 200,000$                       |

| Property                             | R                                                  | L                                                     | С                                                            |
|--------------------------------------|----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|
| $i-\upsilon$ relation                | $i = \frac{v}{R}$                                  | $i = \frac{1}{L} \int_{t_0}^t \upsilon  dt' + i(t_0)$ | $i = C  \frac{dv}{dt}$                                       |
| v- <i>i</i> relation                 | v = iR                                             | $v = L \frac{di}{dt}$                                 | $\upsilon = \frac{1}{C} \int_{t_0}^t i  dt' + \upsilon(t_0)$ |
| p (power transfer in)                | $p = i^2 R$                                        | $p = Li \frac{di}{dt}$                                | $p = C\upsilon \ \frac{d\upsilon}{dt}$                       |
| w (stored energy)                    | 0                                                  | $w = \frac{1}{2}Li^2$                                 | $w = \frac{1}{2}Cv^2$                                        |
| Series combination                   | $R_{\rm eq}=R_1+R_2$                               | $L_{\rm eq} = L_1 + L_2$                              | $\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2}$       |
| Parallel combination                 | $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$ | $\frac{1}{L_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$    | $C_{\rm eq} = C_1 + C_2$                                     |
| dc behavior                          | no change                                          | short circuit                                         | open circuit                                                 |
| Can $v$ change instantaneously?      | yes                                                | yes                                                   | no                                                           |
| Can <i>i</i> change instantaneously? | yes                                                | no                                                    | yes                                                          |

### **Table 5-4** Basic properties of R, L, and C.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits



#### Table 5-5 Response forms of basic first-order circuits.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

| Component               | Group   | Family                | Quantity | Description                     |
|-------------------------|---------|-----------------------|----------|---------------------------------|
| 1 k                     | Basic   | Resistor              | 1        | 1 k $\Omega$ resistor           |
| 10 k                    | Basic   | Resistor              | 1        | 10 kΩ resistor                  |
| 5 f                     | Basic   | Capacitor             | 1        | 5 fF capacitor                  |
| VOLTAGE_CONTROLLED_SPST | Basic   | Switch                | 1        | Switch                          |
| DC_POWER                | Sources | Power_Sources         | 1        | 2.5 V dc source                 |
| PULSE_VOLTAGE           | Sources | Signal_Voltage_Source | 1        | Pulse-generating voltage source |

 Table 5-6
 Multisim component list for the circuit in Fig. 5-52.



**Table 6-1** Step response of RLC circuits for  $t \ge 0$ .

| x(t) = unknown var                                      | iable (voltage or current)                                            |
|---------------------------------------------------------|-----------------------------------------------------------------------|
| <b>Differential equation:</b>                           | x'' + ax' + bx = c                                                    |
| Initial conditions:                                     | x(0) and $x'(0)$                                                      |
| Final condition:                                        | $x(\infty) = \frac{c}{h}$                                             |
| $\alpha = \frac{a}{2}$                                  | $\omega_0 = \sqrt{b}$                                                 |
| Overdamped                                              | <b>Response</b> $\alpha > \omega_0$                                   |
| $x(t) = [A_1 e^{s_1 t} +$                               | $+A_2e^{s_2t}+x(\infty)]u(t)$                                         |
| $s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$          | $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$                        |
| $A_1 = \frac{x'(0) - s_2[x(0) - x(\infty)]}{s_1 - s_2}$ | $A_2 = -\left[\frac{x'(0) - s_1[x(0) - x(\infty)]}{s_1 - s_2}\right]$ |
| Critically I                                            | <b>Damped</b> $\alpha = \omega_0$                                     |
| $x(t) = [(B_1 + B_1)]$                                  | $(e_2 t)e^{-\alpha t} + x(\infty)]u(t)$                               |
| $B_1 = x(0) - x(\infty)$                                | $B_2 = x'(0) + \alpha[x(0) - x(\infty)]$                              |
| Underda                                                 | <b>mped</b> $\alpha < \omega_0$                                       |
| $x(t) = [D_1 \cos \omega_{\rm d} t + I]$                | $D_2 \sin \omega_{\rm d} t + x(\infty)] e^{-\alpha t} u(t)$           |
| $D_1 = x(0) - x(\infty)$                                | $D_2 = \frac{x'(0) + \alpha [x(0) - x(\infty)]}{\omega_4}$            |
| $\omega_{ m d} =$                                       | $\sqrt{\omega_0^2 - \alpha^2}$                                        |

**Table 6-2** General solution for second-order circuits for  $t \ge 0$ .

| Component | Group   | Family        | Quantity | Description                            |
|-----------|---------|---------------|----------|----------------------------------------|
| 1         | Basic   | Resistor      | 1        | 1 Ω resistor                           |
| 300 m     | Basic   | Inductor      | 1        | 300 mH inductor                        |
| 5.33 m    | Basic   | Capacitor     | 1        | 5.33 mF capacitor                      |
| SPDT      | Basic   | Switch        | 1        | Single-pole double-throw (SPDT) switch |
| DC_POWER  | Sources | Power_Sources | 1        | 1 V dc source                          |

 Table 6-3 Component values for the circuit in Fig. 6-19.

| Component  | Group   | Family                | Quantity | Description                 |
|------------|---------|-----------------------|----------|-----------------------------|
| TS_IDEAL   | Basic   | Transformer           | 1        | 1 mH:1 mH ideal transformer |
| 1 k        | Basic   | Resistor              | 1        | 1 kΩ resistor               |
| 1 μ        | Basic   | Capacitor             | 1        | 1 $\mu$ F capacitor         |
| SPDT       | Basic   | Switch                | 1        | SPDT switch                 |
| AC_CURRENT | Sources | Signal_Current_Source | 1        | 1 mA, 5.033 kHz             |

 Table 6-4
 Parts for the Multisim circuit in Fig. 6-23.

Table 7-1Useful trigonometric identities (additionalrelations are given in Appendix D).

| $\sin x = \pm \cos(x \mp 90^\circ)$                                                                                              | (7.7a)                     |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| $\cos x = \pm \sin(x \pm 90^\circ)$                                                                                              | (7.7b)                     |
| $\sin x = -\sin(x \pm 180^\circ)$                                                                                                | (7.7c)                     |
| $\cos x = -\cos(x \pm 180^\circ)$                                                                                                | (7.7d)                     |
| $\sin(-x) = -\sin x$                                                                                                             | (7.7e)                     |
| $\cos(-x) = \cos x$                                                                                                              | (7.7f)                     |
| $sin(x \pm y) = sin x \cos y \pm \cos x \sin y$<br>$cos(x \pm y) = cos x \cos y \mp sin x \sin y$                                | (7.7g)<br>(7.7h)           |
| $2\sin x \sin y = \cos(x-y) - \cos(x+y)$<br>$2\sin x \cos y = \sin(x+y) + \sin(x-y)$<br>$2\cos x \cos y = \cos(x+y) + \cos(x-y)$ | (7.7i)<br>(7.7j)<br>(7.7k) |

| <b>Euler's Identity:</b> $e^{j\theta} = \cos \theta + j \sin \theta$                              |                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$                                              | $\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$                                                                                                                                                                    |  |  |
| $\mathbf{z} = x + jy =  \mathbf{z} e^{j\theta}$                                                   | $\mathbf{z}^* = x - jy =  \mathbf{z} e^{-j\theta}$                                                                                                                                                                     |  |  |
| $x = \mathfrak{Re}(\mathbf{z}) =  \mathbf{z}  \cos \theta$                                        | $ \mathbf{z}  = \sqrt{\mathbf{z}\mathbf{z}^*} = \sqrt{x^2 + y^2}$                                                                                                                                                      |  |  |
| $y = \Im \mathfrak{m}(\mathbf{z}) =  \mathbf{z}  \sin \theta$                                     | $\theta = \begin{cases} \tan^{-1}(y/x) & \text{if } x > 0, \\ \tan^{-1}(y/x) \pm \pi & \text{if } x < 0, \\ \pi/2 & \text{if } x = 0 \text{ and } y > 0, \\ -\pi/2 & \text{if } x = 0 \text{ and } y < 0. \end{cases}$ |  |  |
| $\mathbf{z}^n =  \mathbf{z} ^n e^{jn\theta}$                                                      | $\mathbf{z}^{1/2} = \pm  \mathbf{z} ^{1/2} e^{j\theta/2}$                                                                                                                                                              |  |  |
| $\mathbf{z}_1 = x_1 + jy_1$                                                                       | $\mathbf{z}_2 = x_2 + jy_2$                                                                                                                                                                                            |  |  |
| $\mathbf{z}_1 = \mathbf{z}_2$ iff $x_1 = x_2$ and $y_1 = y_2$                                     | $\mathbf{z}_1 + \mathbf{z}_2 = (x_1 + x_2) + j(y_1 + y_2)$                                                                                                                                                             |  |  |
| $\mathbf{z}_1\mathbf{z}_2 =  \mathbf{z}_1  \mathbf{z}_2 e^{j(\mathbf{	heta}_1+\mathbf{	heta}_2)}$ | $rac{\mathbf{z}_1}{\mathbf{z}_2} = rac{ \mathbf{z}_1 }{ \mathbf{z}_2 } e^{j(	heta_1-	heta_2)}$                                                                                                                       |  |  |
| $-1 = e^{j\pi} = e^{-j\pi} = 1/\pm 180^{\circ}$                                                   |                                                                                                                                                                                                                        |  |  |
| $j = e^{j\pi/2} = 1/90^{\circ}$                                                                   | $-j = e^{-j\pi/2} = 1/-90^{\circ}$                                                                                                                                                                                     |  |  |
| $\sqrt{j} = \pm e^{j\pi/4} = \pm \frac{(1+j)}{\sqrt{2}}$                                          | $\sqrt{-j} = \pm e^{-j\pi/4} = \pm \frac{(1-j)}{\sqrt{2}}$                                                                                                                                                             |  |  |

#### Table 7-2 Properties of complex numbers.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

**Table 7-3** Time-domain sinusoidal functions x(t) and their cosine-reference phasor-domain counterparts **X**, where  $x(t) = \Re e[\mathbf{X}e^{j\omega t}]$ .

| x(t)                                   |                   | X                             |
|----------------------------------------|-------------------|-------------------------------|
| $A\cos\omega t$                        | $\leftrightarrow$ | Α                             |
| $A\cos(\omega t + \phi)$               | $\leftrightarrow$ | $Ae^{j\phi}$                  |
| $-A\cos(\omega t + \phi)$              | $\leftrightarrow$ | $Ae^{j(\phi\pm\pi)}$          |
| $A\sin\omega t$                        | $\leftrightarrow$ | $Ae^{-j\pi/2} = -jA$          |
| $A\sin(\omega t + \phi)$               | $\leftrightarrow$ | $Ae^{j(\phi-\pi/2)}$          |
| $-A\sin(\omega t+\phi)$                | $\leftrightarrow$ | $Ae^{j(\phi+\pi/2)}$          |
| $\frac{d}{dt}(x(t))$                   | $\leftrightarrow$ | jω <b>X</b>                   |
| $\frac{d}{dt}[A\cos(\omega t + \phi)]$ | $\Leftrightarrow$ | j <b>ω</b> Ae <sup>jφ</sup>   |
| $\int x(t) dt$                         | $\Leftrightarrow$ | $\frac{1}{j\omega}\mathbf{X}$ |
| $\int A\cos(\omega t + \phi) dt$       | $\leftrightarrow$ | $rac{1}{j\omega}Ae^{j\phi}$  |

| Property                  | R                                         | L                                            | С                                           |
|---------------------------|-------------------------------------------|----------------------------------------------|---------------------------------------------|
| v—i                       | v = Ri                                    | $\upsilon = L \frac{di}{dt}$                 | $i = C  \frac{dv}{dt}$                      |
| V-I                       | $\mathbf{V} = R\mathbf{I}$                | $\mathbf{V}=j\boldsymbol{\omega}L\mathbf{I}$ | $\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$ |
| Ζ                         | R                                         | jωL                                          | $\frac{1}{j\omega C}$                       |
| dc equivalent             | R                                         | Short circuit                                | Open circuit                                |
| High-frequency equivalent | R                                         | Open circuit                                 | Short circuit                               |
| Frequency response        | $R \xrightarrow{ \mathbf{Z}_{R} } \omega$ | $ \mathbf{Z}_{L} $                           | $ \mathbf{Z}_{C} $                          |

**Table 7-4** Summary of v-i properties for *R*, *L*, and *C*.

**Table 7-5** Inverting amplifier gain *G* as a function of oscillation frequency *f*.  $G_{\text{ideal}} = -5$ .

| f (Hz) | Α        | G      | Error |
|--------|----------|--------|-------|
| 0 (dc) | $10^{5}$ | -4.997 | 0.06% |
| 100    | $10^{4}$ | -4.970 | 0.6%  |
| 1 k    | $10^{3}$ | -4.714 | 5.7%  |
| 10 k   | $10^{2}$ | -3.111 | 37.8% |
| 100 k  | 10       | -0.707 | 85.9% |
| 1 M    | 1        | -0.081 | 98.4% |

The error is defined as

$$\% \operatorname{error} = \left(\frac{G_{\operatorname{ideal}} - G}{G_{\operatorname{ideal}}}\right) \times 100$$



#### Table 8-1 Summary of power-related quantities.

| Load Type                                      | $\phi_z = \phi_v - \phi_i$ | I-V Relationship          | pf      |
|------------------------------------------------|----------------------------|---------------------------|---------|
| <b>Purely Resistive</b> $(X = 0)$              | $\phi_z = 0$               | I in phase with V         | 1       |
| <b>Inductive</b> $(X > 0)$                     | $0 < \phi_z \le 90^\circ$  | I lags V                  | lagging |
| Purely Inductive $(X > 0 \text{ and } R = 0)$  | $\phi_z = 90^\circ$        | I lags V by $90^{\circ}$  | lagging |
| <b>Capacitive</b> $(X < 0)$                    | $-90^\circ \le \phi_z < 0$ | I leads V                 | leading |
| Purely Capacitive $(X < 0 \text{ and } R = 0)$ | $\phi_z = -90^\circ$       | I leads V by $90^{\circ}$ | leading |

| <b>Table 8-2</b> | Power factor leading and lagging relationships for a load $\mathbf{Z} = R + iX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | i on of factor for a for |

Table 9-1Correspondence between power ratios in<br/>natural numbers and their dB values (left table) and<br/>between voltage or current ratios and their dB values<br/>(right table).

| $\frac{P}{P_0}$                                                                                    | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $10^{N}$                                                                                           | 10N dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $10^{3}$                                                                                           | 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100                                                                                                | 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10                                                                                                 | 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4                                                                                                  | $\approx 6 \text{ dB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                                                                                                  | $\approx 3 \text{ dB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                  | 0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.5                                                                                                | $\approx -3 \text{ dB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.25                                                                                               | $\approx -6 \text{ dB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.1                                                                                                | -10  dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10 <sup>-/v</sup>                                                                                  | -10N  dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\left  \frac{\mathbf{V}}{\mathbf{V}_0} \right $ or $\left  \frac{\mathbf{I}}{\mathbf{I}} \right $ | $\left  \frac{\mathbf{I}}{\mathbf{I}_0} \right  \qquad \mathbf{dB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                                                                                                 | $0^N$ 20N dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                                  | $0^3$ 60 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                                                                                                  | 00 40 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                    | 10 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                    | 4 $\approx 12 \text{ dB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                    | $\begin{array}{c c} 4 \\ 2 \\ \end{array} \approx 6 \text{ dB} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                    | $\begin{array}{c c} 4 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C                                                                                                  | $\begin{array}{c c} 4 \\ 2 \\ 2 \\ 1 \\ 0 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0$ |
| 0.                                                                                                 | $\begin{array}{c c} 4 \\ 2 \\ 2 \\ 1 \\ 0 \\ 0.5 \\ 25 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.$ |
|                                                                                                    | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



 Table 9-2
 Bode straight-line approximations for magnitude and phase.



 Table 9-3
 Attributes of series and parallel RLC bandpass circuits.

Notes: (1) The expression for Q of the series RLC circuit is the inverse of that for Q of the parallel circuit. (2) For  $Q \ge 10$ ,  $\omega_{c_1} \approx \omega_0 - \frac{B}{2}$ , and  $\omega_{c_2} \approx \omega_0 + \frac{B}{2}$ .

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits



| Property                        | f(t)                        |                   | $\mathbf{F}(\mathbf{s}) = \boldsymbol{\mathscr{L}}[f(t)]$                        |
|---------------------------------|-----------------------------|-------------------|----------------------------------------------------------------------------------|
| 1. Multiplication by cons       | tant $K f(t)$               | $\leftrightarrow$ | $K \mathbf{F}(\mathbf{s})$                                                       |
| <b>2. Linearity</b> $K_1 f_1$   | $(t)+K_2 f_2(t)$            | $\leftrightarrow$ | $K_1 \mathbf{F}_1(\mathbf{s}) + K_2 \mathbf{F}_2(\mathbf{s})$                    |
| <b>3. Time scaling</b> <i>f</i> | f(at),  a > 0               | $\leftrightarrow$ | $\frac{1}{a} \mathbf{F}\left(\frac{\mathbf{s}}{a}\right)$                        |
| <b>4. Time shift</b> $f(t)$     | (-T) u(t-T)                 | $\Leftrightarrow$ | $e^{-T\mathbf{s}} \mathbf{F}(\mathbf{s}),  T \ge 0$                              |
| 5. Frequency shift              | $e^{-at} f(t)$              | $\leftrightarrow$ | $\mathbf{F}(\mathbf{s}+a)$                                                       |
| 6. Time 1st derivative          | $f' = \frac{df}{dt}$        | $\leftrightarrow$ | $\mathbf{s}\mathbf{F}(\mathbf{s})-f(0^-)$                                        |
| 7. Time 2nd derivative          | $f'' = \frac{d^2 f}{dt^2}$  | $\leftrightarrow$ | $\mathbf{s}^2 \mathbf{F}(\mathbf{s}) - \mathbf{s}f(0^-)$                         |
| 8. Time integral                | $\int_{0^-}^t f(\tau)d\tau$ | $\leftrightarrow$ | $\frac{1}{\mathbf{s}} \mathbf{F}(\mathbf{s})$                                    |
| 9. Frequency derivative         | t f(t)                      | $\leftrightarrow$ | $-\frac{d}{d\mathbf{s}}\mathbf{F}(\mathbf{s})$                                   |
| <b>10. Frequency integral</b>   | $\frac{f(t)}{t}$            | $\leftrightarrow$ | $\int_{\mathbf{s}}^{\mathbf{u}\mathbf{s}} \mathbf{F}(\mathbf{s}')  d\mathbf{s}'$ |

**Table 12-1** Properties of the Laplace transform (f(t) = 0 for  $t < 0^{-})$ .

|            | f(t)                                                   |                   | $\mathbf{F}(\mathbf{s}) - \boldsymbol{\mathscr{G}}[f(t)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|--------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <i>J</i> ( <i>i</i> )                                  |                   | $\mathbf{r}(\mathbf{s}) - \boldsymbol{z} \left[ j\left( l \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1          | $\boldsymbol{\delta}(t)$                               | $\leftrightarrow$ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1a         | $\delta(t-T)$                                          | $\leftrightarrow$ | $e^{-Ts}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2          | 1 or $u(t)$                                            | $\leftrightarrow$ | $\frac{1}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2a         | u(t-T)                                                 | $\Leftrightarrow$ | $\frac{e^{-Ts}}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3          | $e^{-at} u(t)$                                         | $\leftrightarrow$ | $\frac{1}{\mathbf{s}+a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>3</b> a | $e^{-a(t-T)} u(t-T)$                                   | $\leftrightarrow$ | $\frac{e^{-Ts}}{s+a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4          | t u(t)                                                 | $\leftrightarrow$ | $\frac{1}{s^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>4</b> a | (t-T) u(t-T)                                           | $\leftrightarrow$ | $\frac{e^{-1s}}{s^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5          | $t^2 u(t)$                                             | $\leftrightarrow$ | $\frac{2}{\mathbf{s}^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6          | $te^{-at} u(t)$                                        | $\leftrightarrow$ | $\frac{1}{(\mathbf{s}+a)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7          | $t^2 e^{-at} u(t)$                                     | $\leftrightarrow$ | $\frac{2}{(\mathbf{s}+a)^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8          | $t^{n-1}e^{-at}u(t)$                                   | $\leftrightarrow$ | $\frac{(n-1)!}{(\mathbf{s}+a)^n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9          | $\sin \omega t \ u(t)$                                 | $\leftrightarrow$ | $\frac{\omega}{s^2 + \omega^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10         | $\sin(\omega t + \theta) u(t)$                         | $\leftrightarrow$ | $\frac{\frac{1}{3}\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11         | $\cos \omega t \ u(t)$                                 | $\leftrightarrow$ | $\frac{1}{s^2 + \omega^2}$<br>$s \cos \theta - \omega \sin \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12         | $\cos(\omega t + \theta) u(t)$                         | +                 | $\frac{1}{\omega} \frac{1}{\omega} \frac{1}$ |
| 13         | $e^{-\alpha t} \sin \omega t u(t)$                     | $\leftrightarrow$ | $\frac{\overline{(\mathbf{s}+a)^2+\omega^2}}{\mathbf{s}+a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14         | $e \cos \omega t u(t)$                                 | $\leftrightarrow$ | $\overline{(\mathbf{s}+a)^2+\omega^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15         | $2e^{-at}\cos(bt-\theta)u(t)$                          | $\leftrightarrow$ | $\frac{e^{j}}{\mathbf{s}+a+jb} + \frac{e^{-jc}}{\mathbf{s}+a-jb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16         | $\frac{2t^{n-1}}{(n-1)!} e^{-at} \cos(bt-\theta) u(t)$ | $\Leftrightarrow$ | $\frac{e^{j\theta}}{(\mathbf{s}+a+ib)^n} + \frac{e^{-j\theta}}{(\mathbf{s}+a-ib)^n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

**Table 12-2** Examples of Laplace transform pairs for  $T \ge 0$ . Note that multiplication by u(t) guarantees that f(t) = 0 for  $t < 0^-$ .

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

| Pole                | $\mathbf{F}(\mathbf{s})$                                                                            | f(t)                                                      |
|---------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1. Distinct real    | $\frac{A}{\mathbf{s}+a}$                                                                            | $Ae^{-at} u(t)$                                           |
| 2. Repeated real    | $\frac{A}{(\mathbf{s}+a)^n}$                                                                        | $A \frac{t^{n-1}}{(n-1)!} e^{-at} u(t)$                   |
| 3. Distinct complex | $\left[\frac{Ae^{j\theta}}{\mathbf{s}+a+jb} + \frac{Ae^{-j\theta}}{\mathbf{s}+a-jb}\right]$         | $2Ae^{-at}\cos(bt-\theta)u(t)$                            |
| 4. Repeated complex | $\left[\frac{Ae^{j\theta}}{(\mathbf{s}+a+jb)^n} + \frac{Ae^{-j\theta}}{(\mathbf{s}+a-jb)^n}\right]$ | $\frac{2At^{n-1}}{(n-1)!} e^{-at} \cos(bt - \theta) u(t)$ |

 Table 12-3
 Transform pairs for four types of poles.



 Table 12-4
 Circuit models for R, L, and C in the s-domain.

**Table 13-1** Trigonometric integral properties for any integers *m* and *n*. The integration period  $T = 2\pi/\omega_0$ .

| Property                                                   | Integral                                                                     |  |
|------------------------------------------------------------|------------------------------------------------------------------------------|--|
| 1                                                          | $\int_0^T \sin n\omega_0 t  dt = 0$                                          |  |
| 2                                                          | $\int_0^T \cos n\omega_0 t \ dt = 0$                                         |  |
| 3                                                          | $\int_0^T \sin n\omega_0 t \sin m\omega_0 t  dt = 0, \qquad n \neq m$        |  |
| 4                                                          | $\int_0^T \cos n\omega_0 t \cos m\omega_0 t  dt = 0, \qquad n \neq m$        |  |
| 5                                                          | $\int_0^T \sin n\omega_0 t \cos m\omega_0 t  dt = 0$                         |  |
| 6                                                          | $\int_0^T \sin^2 n\omega_0 t \ dt = T/2$                                     |  |
| 7                                                          | $\int_0^T \cos^2 n\omega_0 t  dt = T/2$                                      |  |
| <i>Note:</i> All integral properties remain valid when the |                                                                              |  |
| constant a                                                 | ngle $\phi_0$ . Thus, Property 1, for example,                               |  |
| becomes J                                                  | $\int_{0}^{\bar{T}}\sin(n\omega_{0}t+\phi_{0}) dt=0$ , and Property 5        |  |
| becomes ∫                                                  | $\int_{0}^{T} \sin(n\omega_0 t + \phi_0) \cos(m\omega_0 t + \phi_0) dt = 0.$ |  |

| Table 15-2 Fourier series expressions for a select set of periodic waveforms. |                                                                                                                                                     |                                                                                                                                                                               |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                               | Waveform                                                                                                                                            | Fourier Series                                                                                                                                                                |  |
| 1. Square Wave                                                                | $\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$                                                                         | $f(t) = \sum_{n=1}^{\infty} \frac{4A}{n\pi} \sin\left(\frac{n\pi}{2}\right) \cos\left(\frac{2n\pi t}{T}\right)$                                                               |  |
| 2. Time-Shifted Square<br>Wave                                                | $-T -T/2 \xrightarrow{A} f(t)$                                                                                                                      | $f(t) = \sum_{\substack{n=1\\n=\text{odd}}}^{\infty} \frac{4A}{n\pi} \sin\left(\frac{2n\pi t}{T}\right)$                                                                      |  |
| 3. Pulse Train                                                                | $\begin{array}{c c} A \uparrow f(t) \\ \hline 0 \\ -T & 0 \\ \end{array}  t$                                                                        | $f(t) = \frac{A\tau}{T} + \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin\left(\frac{n\pi\tau}{T}\right) \cos\left(\frac{2n\pi t}{T}\right)$                                         |  |
| 4. Triangular Wave                                                            | $\begin{array}{c} A \downarrow f(t) \\ \hline \\ $                  | $f(t) = \sum_{\substack{n=1\\n=\text{odd}}}^{\infty} \frac{8A}{n^2 \pi^2} \cos\left(\frac{2n\pi t}{T}\right)$                                                                 |  |
| 5. Shifted Triangular<br>Wave                                                 | $\begin{array}{c} A \\ 0 \\ \hline \hline$ | $f(t) = \sum_{\substack{n=1\\n=\text{odd}}}^{\infty} \frac{8A}{n^2 \pi^2} \sin\left(\frac{n\pi}{2}\right) \sin\left(\frac{2n\pi t}{T}\right)$                                 |  |
| 6. Sawtooth                                                                   | $\begin{array}{c c} A & f(t) \\ \hline 0 & \hline \\ -T & A & T \end{array} t$                                                                      | $f(t) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2A}{n\pi} \sin\left(\frac{2n\pi t}{T}\right)$                                                                                    |  |
| 7. Backward Sawtooth                                                          | -2T - T = 0  T = 2T                                                                                                                                 | $f(t) = \frac{A}{2} + \sum_{n=1}^{\infty} \frac{A}{n\pi} \sin\left(\frac{2n\pi t}{T}\right)$                                                                                  |  |
| 8. Full-Wave Rectified<br>Sinusoid                                            | -T  0  T  2T  t                                                                                                                                     | $f(t) = \frac{2A}{\pi} + \sum_{n=1}^{\infty} \frac{4A}{\pi(1-4n^2)} \cos\left(\frac{2n\pi t}{T}\right)$                                                                       |  |
| 9. Half-Wave Rectified<br>Sinusoid                                            | -T/2  0  T/2  T  3T/2  t                                                                                                                            | $f(t) = \frac{A}{\pi} + \frac{A}{2}\sin\left(\frac{2\pi t}{T}\right) + \sum_{\substack{n=2\\n=\text{even}}}^{\infty} \frac{2A}{\pi(1-n^2)}\cos\left(\frac{2n\pi t}{T}\right)$ |  |

| Table 13.2 | Fourier | coming of | wnroccionc  | for a  | coloct cot | of poriodio | wowoform  |
|------------|---------|-----------|-------------|--------|------------|-------------|-----------|
| 1aule 13-2 | rourier | series e  | :xpressions | 101° a | select set | of periodic | wavelorms |

| Cosine/Sine                                                                                              | Amplitude/Phase                                                                                                                                 | Complex Exponential                                                             |  |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| $f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t)$                         | $f(t) = a_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t + \phi_n)$                                                                               | $f(t) = \sum_{n = -\infty}^{\infty} \mathbf{c}_n e^{jn\omega_0 t}$              |  |  |
| $a_0 = \frac{1}{T} \int_0^T f(t) dt$                                                                     | $A_n e^{j\phi_n} = a_n - jb_n$                                                                                                                  | $\mathbf{c}_n =  \mathbf{c}_n  e^{j\phi_n}; \ \mathbf{c}_{-n} = \mathbf{c}_n^*$ |  |  |
| $a_n = \frac{2}{T} \int_0^T f(t) \cos n\omega_0 t  dt$                                                   | $A_n = \sqrt{a_n^2 + b_n^2}$                                                                                                                    | $ \mathbf{c}_n  = A_n/2; \ c_0 = a_0$                                           |  |  |
| $b_n = \frac{2}{T} \int_0^T f(t) \sin n\omega_0 t  dt$                                                   | $\phi_n = \begin{cases} -\tan^{-1}\left(\frac{b_n}{a_n}\right), & a_n > 0\\ \pi - \tan^{-1}\left(\frac{b_n}{a_n}\right), & a_n < 0 \end{cases}$ | $\mathbf{c}_n = \frac{1}{T} \int_0^T f(t) \ e^{-jn\omega_0 t} \ dt$             |  |  |
| $a_0 = c_0; \ a_n = A_n \cos \phi_n; \ b_n = -A_n \sin \phi_n; \ \mathbf{c}_n = \frac{1}{2}(a_n - jb_n)$ |                                                                                                                                                 |                                                                                 |  |  |

**Table 13-3** Fourier series representations for a periodic function f(t).



**Table 13-4** Examples of Fourier transform pairs. Note that constant  $a \ge 0$ .

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits

| Property                        | f(t)                        |                   | $\mathbf{F}(\boldsymbol{\omega}) = \mathscr{F}[f(t)]$                                                                         |
|---------------------------------|-----------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1. Multiplication by a constant | K f(t)                      | $\Leftrightarrow$ | $K \mathbf{F}(\boldsymbol{\omega})$                                                                                           |
| 2. Linearity                    | $K_1 f_1(t) + K_2 f_2(t)$   | $\Leftrightarrow$ | $K_1 \mathbf{F}_1(\boldsymbol{\omega}) + K_2 \mathbf{F}_2(\boldsymbol{\omega})$                                               |
| 3. Time scaling                 | f(at)                       | $\leftrightarrow$ | $\frac{1}{ a } \mathbf{F}\left(\frac{\omega}{a}\right)$                                                                       |
| 4. Time shift                   | $f(t-t_0)$                  | $\Leftrightarrow$ | $e^{-j\omega t_0} \mathbf{F}(\boldsymbol{\omega})$                                                                            |
| 5. Frequency shift              | $e^{j\omega_0 t} f(t)$      | $\leftrightarrow$ | $\mathbf{F}(\boldsymbol{\omega}-\boldsymbol{\omega}_0)$                                                                       |
| 6. Time 1st derivative          | $f' = \frac{df}{dt}$        | $\leftrightarrow$ | $j\boldsymbol{\omega} \mathbf{F}(\boldsymbol{\omega})$                                                                        |
| 7. Time <i>n</i> th derivative  | $\frac{d^nf}{dt^n}$         | $\leftrightarrow$ | $(j\omega)^n \mathbf{F}(\omega)$                                                                                              |
| 8. Time integral                | $\int_{-\infty}^t f(t)  dt$ | $\leftrightarrow$ | $\frac{\mathbf{F}(\boldsymbol{\omega})}{j\boldsymbol{\omega}} + \pi  \mathbf{F}(0)  \boldsymbol{\delta}(\boldsymbol{\omega})$ |
| 9. Frequency derivative         | $t^n f(t)$                  | $\leftrightarrow$ | $(j)^n rac{d^n \mathbf{F}(\boldsymbol{\omega})}{d \boldsymbol{\omega}^n}$                                                    |
| 10. Modulation                  | $\cos \omega_0 t f(t)$      | $\Leftrightarrow$ | $\frac{1}{2}[\mathbf{F}(\boldsymbol{\omega}-\boldsymbol{\omega}_0)+\mathbf{F}(\boldsymbol{\omega}+\boldsymbol{\omega}_0)]$    |
| 11. Convolution in <i>t</i>     | $f_1(t) * f_2(t)$           | $\leftrightarrow$ | $\mathbf{F}_1(\boldsymbol{\omega}) \mathbf{F}_2(\boldsymbol{\omega})$                                                         |
| 12. Convolution in $\omega$     | $f_1(t) f_2(t)$             | $\Leftrightarrow$ | $\frac{1}{2\pi} \mathbf{F}_1(\boldsymbol{\omega}) * \mathbf{F}_2(\boldsymbol{\omega})$                                        |

 Table 13-5
 Major properties of the Fourier transform.

| <b>Table 13-6</b> | Methods | of solution. |
|-------------------|---------|--------------|
|-------------------|---------|--------------|

| <b>Input</b> $x(t)$                           |          |                                                                                |                                                 |
|-----------------------------------------------|----------|--------------------------------------------------------------------------------|-------------------------------------------------|
| Duration                                      | Waveform | Solution Method                                                                | <b>Output</b> $y(t)$                            |
| Everlasting                                   | Sinusoid | Phasor Domain                                                                  | Steady-State Component<br>(no transient exists) |
| Everlasting                                   | Periodic | Phasor Domain and Fourier Series                                               | Steady-State Component<br>(no transient exists) |
| <b>One-sided</b> , $x(t) = 0$ , for $t < 0^-$ | Any      | Laplace Transform (unilateral)<br>(can accommodate nonzero initial conditions) | Complete Solution<br>(transient + steady-state) |
| Everlasting                                   | Any      | Bilateral Laplace Transform<br>or Fourier Transform                            | Complete Solution<br>(transient + steady-state) |

