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Exercise 1-1 Convert the following quantities to scientific notation: (a) 52 mV, (b) 0.3 MV, (c) 136 nA, (d)
0.05 Gbits/s.

Solution:
(a) 52 mV = 52×10−3 V = 5.2×10−2 V
(b) 0.3 MV = 0.3×106 V = 3×105 V
(c) 136 nA = 136×10−9 A = 1.36×10−7 A
(d) 0.05 Gbits/s = 0.05×109 bits/s = 5×107 bits/s
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Exercise 1-2 Convert the following quantities to a prefix format such that the number preceding the prefix
is between 1 and 999: (a) 8.32×107 Hz, (b) 1.67×10−8 m, (c) 9.79×10−16 g, (d) 4.48×1013V, (e) 762 bits/s.

Solution:
(a) 8.32×107 Hz = 83.2×106 Hz = 83.2 MHz
(b) 1.67×10−8 m = 16.7×10−9 m = 16.7 nm
(c) 9.79×10−16 g = 979×10−18 g = 979 ag
(d) 4.48×1013 V = 44.8×1012 V = 44.8 TV
(e) 762 bits/s = 762 bits/s

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Exercise 1-3 Simplify the following operations into a single number, expressed in prefix format: (a) A =
10 µV+2.3 mV, (b) B = 4 THz−230 GHz, (c) C = 3 mm/60 µm.

Solution:
(a) A = 10 µV+2.3 mV = 10×10−3×10−3 V+2.3 mV

= 0.01 mV+2.3 mV = 2.31 mV
(b) B = 4 THz−230 GHz = 4 THz−230×10−3 THz

= 4 THz−0.23 THz = 3.77 THz
(c) C = 3 mm/60 µm = 3×10−3 m/60×10−6 m = 50
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Exercise 1-4 If the current flowing through a given resistor in a circuit is given by i(t) = 5[1− e−2t ] A for
t ≥ 0, determine the total amount of charge that passed through the resistor between t = 0 and t = 0.2 s.

Solution: Based on Eq. (1.6):

q(t) =
∫ t

−∞

i(t) dt

=
∫ 0.2

0
5[1− e−2t ] dt

= 5
[

t− e−2t

−2

]0.2

0

= 5[(0.2+0.5e−0.4)− (0+0.5e0)] C

= 0.18 C
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Exercise 1-5 If q(t) has the waveform shown in Fig. E1-5, determine the corresponding current waveform.

Figure E1-5

Solution: Based on Eq. (1.3), i(t) can be calculated and then plotted. First let’s express q and i as a function
of t:

q i
t < 0 0 0

0≤ t < 1 2t 2
1≤ t < 3 2 0
3≤ t < 4 8−2t −2
4≤ t < 5 −8+2t 2
5≤ t < 7 2 0
7≤ t < 8 16−2t −2

i(t) is equal to the slope of q(t).
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Exercise 1-6 If a positive current is flowing through a resistor, from its terminal a to its terminal b, is υab
positive or negative?

Solution: If positive current is flowing from terminal a to terminal b of a resistor, then terminal a is at a higher
potential than terminal b making υab = (υa−υb) positive.
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Exercise 1-7 A certain device has a voltage difference of 5 V across it. If 2 A of current is flowing through
it from its (−) voltage terminal to its (+) terminal, is the device a power supplier or a power recipient, and how
much energy does it supply or receive in 1 hour?

Solution:

I =−2 A (flowing from negative to positive terminals)

V = 5 V

P = V I =−10 W

By passive sign convention, device is a power supplier.
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Exercise 1-8 A car radio draws 0.5 A of dc current when connected to a 12-V battery. How long does it take
for the radio to consume 1.44 kJ?

Solution:

P = IV = 0.5×12 = 6 W

∆t =
W
P

=
1.44

6
×103 = 240 s = 4 minutes.
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Exercise 1-9 Find Ix from the diagram in Fig. E1-9.

Figure E1-9

Solution:

V1 = 5×2 = 10 V

Ix =
V1

4
= 2.5 A.
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Exercise 1-10 In the circuit of Fig. E1-10, find I at (a) t < 0 and (b) t > 0.

Figure E1-10

Solution:
(a) At t < 0,

I =
12
3

= 4 A.

(b) At t > 0,

I =
12
4

= 3 A.
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Exercise 2-1 A cylindrical resistor made of carbon has a power rating of 2 W. If its length is 10 cm and its
circular cross section has a diameter of 1 mm, what is the maximum current that can flow through the resistor
without damaging it?

Solution: According to Eq. (2.2),

R =
ρ`

A
.

From Table 2-1, the resistivity of carbon is

ρ = 1.4×10−5
Ω-m,

and the cross-sectional area of the wire is

A = π

(
d
2

)2

= π× (0.5×10−3)2

= 7.85×10−7 m2.

Hence,

R =
1.4×10−5×10×10−2

7.85×10−7 = 1.78 Ω,

and from

Pm = I2
mR = 2 W,

Im =

√
2
R

=

√
2

1.78
= 1.06 A.
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Exercise 2-2 A rectangular bar made of aluminum has a current of 3 A flowing through it along its length.
If its length is 2.5 m and its square cross section has 1-cm sides, how much power is dissipated in the bar at
20◦C?

Solution: From Eq. (2.2) and Table 2-1,

R =
ρ`

A
=

2.62×10−8×2.5
(10−2)2 = 6.55×10−4

Ω,

P = I2R = 32×6.55×10−4 = 5.9×10−3 W = 5.9 mW.
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Exercise 2-3 A certain type of diode exhibits a nonlinear relationship between υ , the voltage across it, and
i, the current entering into its (+) voltage terminal. Over its operational voltage range (0–1 V), the current is
given by

i = 0.5υ
2, for 0≤ υ ≤ 1 V.

Determine how the diode’s effective resistance varies with υ and calculate its value at υ = 0, 0.01 V, 0.1 V,
0.5 V, and 1 V.

Solution: The effective resistance of the diode is:

R =
υ

i
=

υ

0.5υ2 =
1

0.5υ
=

2
υ

.

Hence,

υ R
0 ∞

0.01 V 200 Ω

0.1 V 20 Ω

0.5 V 4 Ω

1 V 2 Ω
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Exercise 2-4 If I1 = 3 A in Fig. E2-4, what is I2?

Solution: KCL at the top center node requires that

I1 + I2−2 A = 0.

Hence,
I2 = 2− I1 = 2−3 =−1 A.
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Exercise 2-5 Apply KCL and KVL to find I1 and I2 in Fig. E2-5.

Solution: KCL at node 1 requires that
I1 = I2 +4.

Also, KVL for the left loop is
−20+4I2 +2I1 = 0.

Simultaneous solution leads to
I1 = 6 A, I2 = 2 A.
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Exercise 2-6 Determine Ix in the circuit of Fig. E2-6.

Solution:

KCL @ node 1: Ix = I1 +4
KCL @ node 2: I1 +4 = I2 + I3
KVL Loop 1: 4Ix +2I1 +8I3 = 0
KVL Loop 2: −8I3 +2I2−2Ix = 0

We have four equations with four unknowns. Simultaneous solution leads to

Ix = 1.33.
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Exercise 2-7 Apply resistance combining to simplify the circuit of Fig. E2-7 so as to find I. All resistor
values are in ohms.

Figure E2-7

Solution: Combining all resistors that are in series will result in the following circuit:

Combining all resistors that are in parallel will result in:

I =
10 V
2 Ω

= 5 A.
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Exercise 2-8 Apply source transformation to the circuit in Fig. E2-8 to find I.

Figure E2-8

Solution: Apply source transformation to the 12-V source and 6-Ω resistor:

Current division gives

I =
12×2
2+4

= 4 A.
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Exercise 2-9 For each of the circuits shown in Fig. E2-9, determine the equivalent resistance between
terminals (a,b).

Solution:
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(a)

Req = 15 Ω.

(b) Applying Y-∆ transformation

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Req = 0.
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Exercise 2-10 If in the sensor circuit of Fig. 2-37, V0 = 4 V and the smallest value of Vout that can be
measured reliably is 1 µV, what is the corresponding accuracy with which (∆R/R) can be measured?

Solution:

Vout =
V0

4

(
∆R
R

)
,

∆R
R

=
4Vout

V0
=

4×10−6

4
= 10−6
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Exercise 2-11 Determine I in the two circuits of Fig. E2-11. Assume VF = 0.7 V for all diodes.

Figure E2-11

Solution:
(a) With VF = 0.7 V, KVL around the loop gives

−12+2×103I +0.7+3×103I +0.7 = 0,

which leads to
I =

12−1.4
5×103 = 2.12 mA.

(b) Since the diodes are biased in opposition to one another, no current can flow in the circuit. Hence

I = 0.
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Exercise 2-12 What would the output voltage associated with the circuit of Example 2-18 change to, if the
cantilever thickness is reduced by a factor of 2?

Solution:
Vout ∼

1
H2 .

Hence Vout will change to

Vout(new) =
Vout(old)
H2(new)

H2(old) =
−0.1
(0.5)2 =−0.4 V.
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Exercise 2-13 The circuit in Fig. E2-13 is called a resistive bridge. How does Vx = (V3−V2) vary with the
value of potentiometer R1?

Solution: Using DC Operating Point Analysis and varying the value of the potentiometer, we obtain the
following values for (V3−V2):

R1 (% of 1 kΩ) Vx = V2−V3
100% 0 mV
80% 55.6 mV
60% 125 mV
40% 214 mV
20% 333 mV
0% 500 mV
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Exercise 2-14 Simulate the circuit shown in Fig. E2-14 and solve it for the voltage across R3. The magnitude
of the dependent current source is V1/100.

Solution: The circuit drawn in Multisim is shown below.

Note: The expression entered into the ABM CURRENT source was V(foo)/100. The node above the source V1
was renamed from “1” to “foo” (by double-clicking on the wire) to avoid confusing the expression for the source
voltage, vv(1), and the symbol for the node voltage, V(1). Once renamed, the symbol for the node becomes
V(foo) and the ABM CURRENT expression becomes V(foo)/100. Had we left the node with the name “1”,
the ABM CURRENT expression would have been V(1)/100.

The Measurement Probe on node 3 shows us that the voltage on R3, relative to ground, is 120 mV.
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Exercise 3-1 Apply nodal analysis to determine the current I.

Figure E3-1

Solution:

I1 + I2 + I = 0

I1 =
Va

10
, I2 =

Va−24
10

, I3 =
Va

1

Hence,

Va

10
+

Va−24
10

+Va = 0,

Va

(
1
10

+
1
10

+1
)

=
24
10

,

which leads to
Va = 2 V, I =

Va

1
= 2 A.
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Exercise 3-2 Apply nodal analysis to find Va.

Figure E3-2

Solution:

I1 + I2 + I3 = 0

I1 =
VB−9

20
, I2 =

VB−
Va

2
10

, I3 =
VB

40
.

Hence,

VB−9
20

+
VB−

Va

2
10

+
VB

40
= 0.

Also,
VA = 9−VB.

Solution gives: Va = 5 V.
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Exercise 3-3 Apply the supernode concept to determine I in the circuit of Fig. E3-3.

Solution:

(V1,V2) constitutes a supernode. Hence,

I1 + I + I2 + I3 = 0,

I1 =−2 A, I =
V1

2
,

I3 =
V2

4
, I2 =

V2−20
4

.

Also,
V2−V1 = 12.

Solution leads to: I = 0.5 A.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Exercise 3-4 Apply mesh analysis to determine I.

Figure E3-4

Solution:

Mesh 1: −12+4I1 +4(I1− I2) = 0
Mesh 2: I2 = 3 A

4I1 +4I1−4×3 = 12

8I1 = 24

I1 = 3 A.

=⇒ I = I1− I2 = 3−3 = 0.
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Exercise 3-5 Determine the current I in the circuit of Fig. E3-5.

Figure E3-5

Solution:

Mesh 1: −60+10Ia +20(Ia− Ib) = 0

Mesh 2: Ib =
I1

2
Also,

I1 = Ia.

Hence,

Ib =
Ia

2
,

−60+10Ia +20
(

Ia−
Ia

2

)
= 0,

which simplifies to
20I1 = 60

or

Ia = 3 A,

I = Ia− Ib = Ia−
Ia

2
=

Ia

2
=

3
2

= 1.5 A.
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Exercise 3-6 Apply mesh analysis to determine I in the circuit of Fig. E3-6.

Figure E3-6

Solution:

Outside mesh: 2I1 +3I2 +5I3 = 0.

Also,
I2− I1 = 4 A, I2− I3 = 3 A.

Hence,

I1 = I2−4 = (I3 +3)−4 = I3−1

I2 = I3 +3

2(I3−1)+3(I3 +3)+5I3 = 0

10I3 = 2−9

I3 =−0.7 A

I = I3 =−0.7 A.
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Exercise 3-7 Apply the node-analysis by-inspection method to generate the node voltage matrix for the
circuit in Fig. E3-7.

Solution:

G11 =
1
3

+
1
2

=
5
6

, G22 =
1
3

+
1
5

=
8
15

, G11 =
5
6

,

G12 =−1
3

= G21, G22 =
8
15

.

Hence, 
5
6
−1

3

−1
3

8
15




V1

V2

=


4

−3

 .

By MATLAB software, [
V1
V2

]
=
[

3.4 V
−3.5 V

]
.
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Exercise 3-8 Use the by-inspection method to generate the mesh current matrix for the circuit in Fig. E3-8.

Figure E3-8

Solution:

R11 = 5+10 = 15

R22 = 10+20+6 = 36

R33 = 20+12 = 32

R12 = R21 =−10

R13 = R31 = 0

R23 = R32 =−20

Hence,

R =

 15 −10 0
−10 36 −20

0 −20 32


V =

8+4 = 12
−8
−2


I = R−1V =

 0.7505
−0.0743
−0.1089


∴ I1 = 0.75 A

I2 =−0.07 A

I3 =−0.11 A
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Exercise 3-9 Apply the source-superposition method to determine the current I in the circuit of Fig. E3-9.

Figure E3-9

Solution:

I =
23

3+7
= 2.3 A.
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Exercise 3-10 Apply source superposition to determine Vout in the circuit of Fig. E3-10.

Figure E3-10

Solution:
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By voltage division,

Vout =
−6×1
5+1

=−1 V.
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Exercise 3-11 Determine the Thévenin-equivalent circuit at terminals (a,b) in Fig. E3-11.

Solution:

(1) Open-circuit voltage

We apply node voltage method to determine open-circuit voltage:

V1

2
−4+

V1−V2

3
= 0,

V2−V1

3
+3+

V2

5
= 0.

Solution gives: V2 =−3.5 V.
Hence,

VTh = Voc =−3.5 V.

(2) Short-circuit current

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Because of the short circuit,
V2 = 0.

Hence at node V1:

V1

2
−4+

V1

3
= 0

V1

(
1
2

+
1
3

)
= 4

V1 =
24
5

V

I1 =
V1

3
=

24
5×3

=
8
5

A,

Isc = I1−3 =
8
5
−3 =−7

5
=−1.4 A

RTh =
VTh

Isc
=
−3.5
−1.4

= 2.5 Ω.

Thévenin equivalent:

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Exercise 3-12 Find the Thévenin equivalent of the circuit to the left of terminals (a,b) in Fig. E3-12, and
then determine the current I.

Figure E3-12

Solution: Since the circuit has no dependent sources, we will apply multiple steps of source transformation to
simplify the circuit.
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Across (a,b),

VTh = Voc =
10×3
12+3

= 2 V

RTh = 3 ‖ 12+0.6

=
3×12
3+12

+0.6 = 3 Ω

Hence,

I =
2

3+1
= 0.5 A.
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Exercise 3-13 Find the Norton equivalent at terminals (a,b) of the circuit in Fig. E3-13.

Figure E3-13

Solution: Thévenin voltage

At node 1:
I = 2 A.

Hence,
VTh = Voc = 10I−3×3I = I = 2 V.

Next, we determine the short-circuit current:
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At node V1:

−2−3I +
V1

10
+

V1

3
= 0.

Also,

I =
V1

10
.

Hence,

−2−3I + I +
10
3

I = 0,

which gives

I = 1.5 A,

I1 = 2+3I− I = 2+2I = 5 A,

Isc = 5−3I = 5−4.5 = 0.5 A.

RTh =
VTh

Isc
=

2
0.5

= 4 Ω.

Norton circuit is:
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Exercise 3-14 The bridge circuit of Fig. E3-14 is connected to a load RL between terminals (a,b). Choose
RL such that maximum power is delivered to RL. If R = 3 Ω, how much power is delivered to RL?

Figure E3-14

Solution: We need to remove RL and then determine the Thévenin equivalent circuit at terminals (a,b).
Open-circuit voltage:

The two branches are balanced (contain same total resistance of 3R). Hence, identical currents will flow, namely

I1 = I2 =
24
3R

=
8
R

.

Voc = Va−Vb = 2RI1−RI2 = RI1 = R
8
R

= 8 V.

To find RTh, we replace the source with a short circuit:
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R ‖ 2R =
R×2R
R+2R

=
2
3

R

Hence,

RTh =
4R
3

,

and the Thévenin circuit is
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For maximum power transfer with R = 3 Ω, RL should be

RL =
4R
3

=
4×3

3
= 4 Ω,

and

Pmax =
υ2

s

4RL
=

82

4×4
= 4 W.
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Exercise 3-15 Determine IB, Vout1 , and Vout2 in the transistor circuit of Fig. E3-15, given that VBE = 0.7 V
and β = 200.

Solution: Using the equivalent-circuit model:

Loop 2
I2 =−200IB =−200I1

Loop 1

−2+ I1(5000)+0.7+100(I1− I2) = 0

−1.3+5100I1 +20000I1 = 0

or
25100I1 = 1.3,

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



which gives

1.3 = 25,100I1

I1 = IB = 0.00005179 A = 51.79 µA

IB = 51.79 µA

IC = 200IB = 10.36 mA

Vout2 = 8−200IC = 8−2.07 = 5.93 V

IE = IB + IC = 10.41 mA

Vout1 = 100IE = 1.041 V.
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Exercise 3-16 Use Multisim to calculate the voltage at node 3 in Fig. 3-38(b) when the SPDT switch is
connected to position 2.

Solution: From Probe 1, we can see that V(3) = 13.0 mV.
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Exercise 4-1 In the circuit of Example 4-1, shown in Fig. 4-5, insert a series resistance Rs between υs and υp,
and then repeat the solution to obtain an expression for G. Evaluate G for Rs = 10 Ω, and use the same values
listed in Example 4-1 for the other quantities. What impact does the insertion of Rs have on the magnitude
of G?

Solution:

At node a :
υn−υo

R1
=

υo−A(υp−υn)
Ro

.

At node b :
υn−υp

Ri
+

υn

R2
+

υn−υo

R1
= 0.
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Additionally,

υp = υs + i1Rs

= υs +
(

υn−υp

Ri

)
Rs.

Solving the three equations simultaneously leads to

G =
υo

υs
=

[A(Ri +Rs)(R1 +R2)+R2Ro]
[AR2(Ri +Rs)+Ro(R2 +Ri +Rs)

+R1R2 +(Ri +Rs)(R1 +R2)]

.

For Rs = 10 Ω, Ri = 107 Ω, R0 = 10 Ω, R1 = 80 kΩ, R2 = 20 kΩ, and A = 106,

G = 4.999977' 5.0.
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Exercise 4-2 To evaluate the tradeoff between the circuit gain G and the linear dynamic range of υs, apply
Eq. (4.8) to find the magnitude of G, and then determine the corresponding dynamic range of υs, for each of
the following values of R2: 0 (no feedback), 800 Ω, 8.8 kΩ, 40 kΩ, 80 kΩ, 1 MΩ. Except for R2, all other
quantities remain unchanged.

Solution:

G =
ARi(R1 +R2)+R2Ro

AR2Ri +Ro(R2 +Ri)+R1R2 +Ri(R1 +R2)

υo = Gυs

|υo|max = υcc = 10 V.

Hence,

|υs|max =
10
G

.

For A = 106, Ri = 107 Ω, R1 = 80 kΩ, Ro = 10 Ω, we obtain the following table:

R2 G υs Range
0 106 −10 µV to +10 µV

800 Ω 101 −99 mV to +99 mV
8.8 kΩ 10.1 −0.99 V to +0.99 V
40 kΩ 3 −3.3 V to +3.3 V
80 kΩ 2 −5 V to +5 V
1 MΩ 1.08 −9.26 V to +9.26 V
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Exercise 4-3 Consider the noninverting amplifier circuit of Fig. 4-9(a), under the conditions of the ideal
op-amp model. Assume Vcc = 10 V. Determine the value of G and the corresponding dynamic range of υs for
each of the following values of R1/R2: 0, 1, 9, 99, 103, 106.

Solution:

G =
υo

υs
=

R1 +R2

R2
,

|υo|max = Vcc = 10 V ,

|υs|max =
10
G

.

Using these expressions leads to the following table:

R1/R2 G υs Range
0 1 −10 V to +10 V
1 2 −5 V to +5 V
9 10 −1 V to +1 V

99 100 −0.1 V to +0.1 V
1000 ≈ 1000 −10 mV to +10 mV (Approx.)

106 ≈ 106 −10 µV to +10 µV (Approx.)
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Exercise 4-4 The input to an inverting-amplifier circuit consists of υs = 0.2 V and Rs = 10 Ω. If Vcc = 12 V,
what is the maximum value that Rf can assume before saturating the op amp?

Solution:

G =−Rf

Rs
,

|υo|max = Vcc = 12 V.

At saturation

|υs|=
|υo|max

G
.

Hence, maximum allowed value of |G| is

|G|= |υo|max

υs
=

12
0.2

= 60,

which corresponds to
Rf = |G|Rs = 60×10 = 600 Ω.
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Exercise 4-5 The circuit shown in Fig. 4-13(a) is to be used to perform the operation

υo = 3υ1 +6υ2.

If R1 = 1.2 kΩ, Rs2 = 2 kΩ, and Rf2 = 4 kΩ, select values for R2 and Rf1 so as to realize the desired result.

Solution:

Given the output-input relations for the two stages, it follows that

υo2 =
(
−Rf2

Rs2

)
υo1 =

(
−Rf2

Rs2

)[(
−Rf1

R1

)
υ1 +

(
−Rf1

R2

)
υ2

]
,

=
(

Rf1Rf2

R1Rs2

)
υ1 +

(
Rf1Rf2

R2Rs2

)
υ2.

We are given that R1 = 1.2 kΩ, Rs2 = 2 kΩ, and Rf2 = 4 kΩ. Additionally, to match the required operation, we
need to have

Rf1Rf2

R1Rs2

= 3,

Rf1Rf2

R2Rs2

= 6.

The ratio of these two conditions gives
R2

R1
=

1
2

, or R2 =
R1

2
=

1200
2

= 600 Ω.

Finally,
4×103Rf1

1.2×103×2×103 = 3

leads to
Rf1 = 1.8 kΩ.
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Exercise 4-6 The difference-amplifier circuit of Fig. 4-15 is used to realize the operation

υo = (6υ2−2) V.

Given that R3 = 5 kΩ, R4 = 6 kΩ, and R2 = 20 kΩ, specify values for υ1 and R1.

Solution:
υo =

(
R4

R3 +R4

)(
R1 +R2

R1

)
υ2−

R2

R1
υ1 .

To satisfy the required operation, it is necessary that(
R4

R3 +R4

)(
R1 +R2

R1

)
= 6.

Given that R3 = 5 kΩ, R4 = 6 kΩ, and R2 = 20 kΩ, it follows that

R1 = 2 kΩ.

To satisfy the second term of the operation, we need to have(
R2

R1

)
υ1 = 2,

or

υ1 =
2R1

R2
=

2×2×103

20×103 = 0.2 V.
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Exercise 4-7 Express υo in terms of υ1, υ2 and υ3 for the circuit in Fig. E4-7.

Figure E4-7

Solution: Starting from the output of the second stage and moving backwards towards the inputs,

υo =
(
−10×103

5×103

)[(
− 3×103

0.5×103

)
υ1 +

(
−3×103

103

)
υ2 +

(
−3×103

2×103

)
υ3

]
= 12υ1 +6υ2 +3υ3.
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Exercise 4-8 To monitor brain activity, an instrumentation-amplifier sensor uses a pair of needle-like probes,
inserted at different locations in the brain, to measure the voltage difference between them. If the circuit is of
the type shown in Fig. 4-22, with R1 = R3 = R4 = R5 = R = 50 kΩ and Vcc = 12 V, and the maximum magnitude
of the voltage difference that the brain is likely to exhibit is 3 mV, what should R2 be to maximize the sensitivity
of the brain sensor?

Solution:
υo =

(
1+

2R
R2

)
(υ2−υ1).

We are given that υ2−υ1 = 3 mV and to avoid saturation |υo|max should not exceed Vcc. Hence,

1+
2R
R2

=
|υo|max

|υ2−υ1|
=

12
3×10−3 = 4000,

and

R2 +
2R

4000−1
≈ 2×50×103

4×103 = 25 Ω.
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Exercise 4-9 A 3-bit DAC uses an R-2R ladder design with R = 3 kΩ and Rf = 24 kΩ. If Vcc = 10 V, write
an expression for Vout and evaluate it for [V1V2V3] = [111].

Solution:
Vout =−

(
Rf

RTh

)
VTh,

with
RTh = R,

and
VTh =

V1

2
+

V2

4
+

V3

8
.

With Rf = 24 kΩ and R = 3 kΩ,
Vout =−(4V1 +2V2 +V3).

For [V1V2V3] = [111], Vout =−7 V.
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Exercise 4-10 In the circuit of Example 4-9, what value of RD will give the highest possible ac gain, while
keeping υout(t) always positive?

Solution:

Vout = VDD−gRD υs(t)

= VDD−gRD(500+40cos300t)×10−6

= (VDD−500gRD×10−6)−40gRD×10−6 cos300t.

Maximizing the ac gain without allowing υout to go negative is accomplished by selecting RD such that

40gRD×10−6

VDD−500gRD×10−6 = 1.

Given that VD = 10 V and g = 10 A/V, it follows that

RD = 1.85 kΩ.
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Exercise 4-11 Repeat Example 4-10, but require that υout be at least 99.9% of υs. What should RL be: (a)
without the buffer, and (b) with the buffer?

Solution:

Without Buffer
RL

Rs
= 999, or RL = 999×100 = 99.9 kΩ.

With Buffer
υo

υs
= 0.999 =

9RL

1+gRL
.

With g = 10 A/V,
RL = 99.9 Ω.
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Exercise 4-12 Why are the voltage followers necessary in the circuit of Fig. 4-35? Remove them from the
Multisim circuit and connect the resistive bridge directly to the two inputs of the differential amplifier. How
does the output vary with the potentiometer setting?

Solution:

The voltage followers are necessary because they have a high input impedance; this high impedance prevents
any currents from running between the bridge and the high gain amplifier (particularly resistor R8 in Fig. 4-33),
effectively isolating the two components. Consider our analysis of the Wheatstone bridge in Section 2-6;
applying the same analysis to Fig. 4-33 assumes that all of the current through R3 flows through R5 and all
of the current through R1 flows through R2. This assumption is only true if the input impedance seen across
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node 3 and node 4 is much higher than the resistances of the bridge (otherwise, non-negligible current will flow
through the op-amps, lowering the value of the voltage between node 3 and node 4).

Removing the two voltage followers will result in a lower voltage across nodes 3 and 4, and thus, a lower
output voltage. This is shown in the figure below.

The best way to see this is to remove the two voltage followers from the circuit and raise the resistances of all
four Wheatstone bridge resistors to, say, 100 kΩ. Re-run the Interactive Simulation. Notice the difference in
the voltage output with (blue line) and without (red line) the voltage followers; when plotting this figure, R3
was varied from an initial value of 100% (100 kΩ) to 0% (0% kΩ). In the author’s computer, TMAX and the
Initial Time Step were set to 1e-5 s under Simulate −→ Interactive Simulation Settings.
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Exercise 4-13
The I-V Analyzer is another useful Multisim instrument for analyzing circuit performance. To demonstrate

its utility, let us use it to generate characteristic curves for an NMOS transistor, similar to those in Fig. 4-27(b).
Figure E4-13(a) shows an NMOS connected to an I-V Analyzer. The instrument sweeps through a range of
gate (G) voltages and generates a current-versus-voltage (I-V) plot between the drain (D) and source (S) for
each gate voltage. Show that the display of the I-V analyzer is the same as that shown in Fig. E4-13(b).

Fig. E4-13: (a) Circuit schematic and (b) I-V analyzer traces for IDS versus VDS at selected values of VGS.
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Solution: Draw your circuit as in Fig. E4-13(a). Double click on the IV Analyzer; it should look like the figure
below.

Select NMOS under the Components drop-down menu; press the Lin (linear plot) button for both the Current
Range and Voltage Range. Set current and voltage values as shown in the figure. You can generate Figure
E4-13(b) by opening the Grapher windows and formatting accordingly.
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Exercise 5-1 Express the waveforms shown in Fig. E5-1 in terms of unit step functions.

Figure E5-1

Solution:
(a)

υ(t) = 10u(t)−20u(t−2)+10u(t−4).
(b)
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υ(t) = 2.5r(t)−10u(t−2)−2.5r(t−4).
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Exercise 5-2 How is u(t) related to u(−t)?

Solution:

u(−t) is the mirror image of u(t) with respect to the vertical axis.
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Exercise 5-3 Consider the SPDT switch in Fig. 5-6(a). Assume that it started out at position 2, was moved
to position 1 at t = 1 s, and then moved back to position 2 at t = 5 s. This is the reverse of the sequence shown
in Fig. 5-6(a). Express υ(t) in terms of (a) units step functions and (b) the rectangle function.

Solution:

(a) υ(t) = V0[u(1− t)+u(t−5)]
(b) υ(t) = V0−V0 rect

( t−3
4

)
[rectangle center at 3 s and length = 4 s].
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Exercise 5-4 The radioactive decay equation for a certain material is given by n(t) = n0e−t/τ , where n0 is
the initial count at t = 0. If τ = 2×108 s, how long is its half-life? [Half-life t1/2 is the time it takes a material
to decay to 50% of its initial value.]

Solution: Given
n(t) = n0e−t/(2×108),

The time t at which n(t) = n0/2 is obtained by solving for t in

n0

2
= n0e−t/(2×108),

or
ln

1
2

=
−t

2×108 ,

which gives t =−2×108 ln2 = 1.386×108 s = 4 years, 144 days, 12 hours, 10 minutes, and 36 s.
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Exercise 5-5 If the current i(t) through a resistor R decays exponentially with a time constant τ , what is the
value of the power dissipated in the resistor at t = τ , compared with its value at t = 0?

Solution:

p(t) = i2R = I2
0 R(e−t/τ)2 = I2

0 Re−2t/τ ,(
p(τ)
p(0)

)
= e−2 = 0.135, or 13.5%.
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Exercise 5-6 It is desired to build a parallel-plate capacitor capable of storing 1 mJ of energy when the
voltage across it is 1 V. If the capacitor plates are 2 cm × 2 cm each, and its insulating material is Teflon, what
shold the separation d be? Is such a capacitor practical?

Solution:

w =
1
2

Cυ
2,

10−3 =
1
2

C12, =⇒ C = 2×10−3 F,

C =
εA
d

, and ε = 2.1ε0 for Teflon.

Hence,

2×10−3 =
2.5×8.85×10−12× (0.02)2

d
,

which yields
d = 3.72×10−12 m.

Certainly, not practical.
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Exercise 5-7 Instead of specifying A and calculating the spacing d needed to meet the 1-mJ requirement in
Exercise 5-6, suppose we specify d as 1 µm and then calculate A. How large would A have to be?

Solution:

C = 0.002 =
2.1×8.85×10−12 A

10−6 ,

which gives
A = 10.4 m×10.4 m.

Equally impractical size.
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Exercise 5-8 Determine the current i in the circuit of Fig. E5-8, under dc conditions.

Figure E5-8

Solution: Under dc conditions, capacitors act like open circuits. Hence, the circuit becomes:

Voltage division gives

i = 1.5× 40k
40k+15k+5k

= 1 A.
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Exercise 5-9 Determine Ceq and Veq(0) at terminals (a,b) for the circuit in Fig. E5-9, given that
C1 = 6 µF, C2 = 4 µF and C3 = 8 µF, and the initial voltages on the three capacitors are υ1(0) = 5 V and
υ2(0) = υ3(0) = 10 V.

Figure E5-9

Solution:

Ceq =
C1(C2 ‖C3)
C1 +C2 +C3

=
C1(C2 +C3)
C1 +C2 +C3

=
6×10−6(4×10−6 +8×10−6)

(6+4+8)×10−6 = 4 µF,

Veq(0) = υ1(0)+υ2(0) = 5+10 = 15 V.
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Exercise 5-10 Suppose the circuit of Fig. E5-9 is connected to a dc voltage source V0 = 12 V. Assuming
that the capacitors had no charge before they were connected to the voltage source, determine υ1 and υ2, given
that C1 = 6 µF, C2 = 4 µF, and C3 = 8 µF.

Solution:

According to Eq. (5.46),
C1υ1 = (C2 ‖C3)υ2,

or

υ2 =
C1υ1

C2 +C3
=

6×10−6

4×10−6 +8×10−6 υ1 =
υ1

2
.

But
υ1 +υ2 = 12 V.

Hence,
υ1 = 8 V and υ2 = 4 V.
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Exercise 5-11 Calculate the inductance of a 20-turn air-core solenoid if its length is 4 cm and the radius of
its circular cross section is 0.5 cm.

Solution:

L =
µN2S

`
=

4π×10−7×202×π(0.005)2

0.04
= 0.987 µH.
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Exercise 5-12 Determine currents i1 and i2 in the circuit of Fig. E5-12, under dc conditions.

Solution: Under dc conditions, inductors act like short circuits.

The 6-A current will flow entirely through the short circuit representing L3. Hence,

i1 = 0, i2 = 6 A.
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Exercise 5-13 Determine Leq at terminals (a,b) in the circuit of Fig. E5-13.

Figure E5-13

Solution:

Leq = 2 mH+(6 mH ‖ 12 mH)

=
(

2+
6×12
6+12

)
mH

= 6 mH.
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Exercise 5-14 If in the circuit of Fig. E5-14, υ(0−) = 24 V, determine υ(t) for t ≥ 0.

Figure E5-14

Solution:

υ(t) = υ(0) e−t/τ

= υ(0) e−t/RC

= 24e−10t V, for t ≥ 0.
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Exercise 5-15 Determine υ1(t) and υ2(t) for t ≥ 0, given that in the circuit of Fig. E5-15 C1 = 6 µF,
C2 = 3 µF, R = 100 kΩ, and neither capacitor had any charge prior to t = 0.

Figure E5-15

Solution:

υ1(0) = υ2(0) = 0 [given]

υ1(∞)+υ2(∞) = 12 V [At t = ∞, capacitors act like open circuits]

C1υ1(∞) = C2υ2(∞), [Eq. (5.46)].

Hence,
C1υ1(∞) = C2[12−υ1(∞)],

which leads to

υ1(∞) = 12
C2

C1 +C2
= 4 V,

υ2(∞) = 12−4 = 8 V.

Also,

τ = RCeq = R
C1C2

C1 +C2
= 0.2 s.

Hence,

υ1(t) = υ1(∞)+ [υ1(0)−υ1(∞)]e−t/τ

= 4(1− e−5t) V, for t ≥ 0,

υ2(t) = υ2(∞)+ [υ2(0)−υ2(∞)]e−t/τ

= 8(1− e−5t) V, for t ≥ 0.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Exercise 5-16 Determine i1(t) and i2(t) for t ≥ 0, given that in the circuit of Fig. E5-16 L1 = 6 mH, L2 =
12 mH, and R = 2 Ω. Assume i1(0−) = i2(0−) = 0.

Solution:

i1(t) =
1
L1

∫ t

0
υ(t) dt

=
1.8R
L1

∫ t

0
e−500t dt

=
1.8R
L1

[
e−500t

−500

]t

0

=
1.8×2
500L1

(1− e−500t)

= 1.2(1− e−500t) u(t) A,

i2(t) =
1
L2

∫ t

0
υ(t) dt

=
1

12×10−3

∫ t

0
υ(t) dt

= 0.6(1− e−500t) u(t) A.
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Exercise 5-17 The input signal to an ideal integrator circuit with RC = 2×10−3 s and Vcc = 15 V is given
by υs(t) = 2sin100t V. What is υout(t)?

Solution:
υout(t) =− 1

RC

∫ t

t0
υi dt +υout(t0).

Assuming the integration started at t0 = 0 at which time υout(0) = 0,

υout(t) =− 1
2×10−3

∫ t

0
2sin100t dt

=
2

2×10−3×100
cos(100t)|t0

= 10[cos(100t)−1] V.
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Exercise 5-18 Repeat Exercise 5-17 for a differentiator instead of an integrator.

Solution:

υout(t) =−RC
dυi

dt

=−2×10−3 d
dt

[2sin(100t)]

=−0.4cos(100t) V.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Exercise 5-19 A CMOS inverter with Cn
D +Cp

D = 20 fF has a fall time of 1 ps. What is the value of its gain
constant?

Solution:

tfall =
Cn

D +Cp
D

g
,

g =
Cn

D +Cp
D

tfall
=

20×10−15

10−12 = 2×10−2 A/V.
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Exercise 6-1 For the circuit in Fig. E6-1, determine υC(0), iL(0), υL(0), iC(0), υC(∞), iL(∞).

Solution:

Before t = 0:

υC(0) = υC(0−) =
6

4+6
10 = 6 V,

iL(0) = iL(0−) =
10

4+6
= 1 A.

After t = 0:
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υL(0) =−υC(0) =−6 V,

iC(0) = iL(0)− υC(0)
6

= 0 A,

υC(∞) = 0 V (no sources and closed loop access to resistors),

iL(∞) = 0 A (no sources and closed loop access to resistors).
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Exercise 6-2 For the circuit in Fig. E6-2, determine υC(0), iL(0), υL(0), iC(0), υC(∞), and iL(∞).

Solution:

Before t = 0:

Hence:

υC(0) = υC(0−) = 0 V (no sources and closed loop access to resistors),

iL(0) = iL(0−) = 0 A.

After t = 0:
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υL(0) = υC(0)− iL(0)×4−12 =−12 V,

iC(0) =
υC(0)

2
= 0 A,

υC(∞) =
2

2+4
12 V = 4 V,

iL(∞) =
υC(∞)−12

4
=−2 A.
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Exercise 6-3 After interchanging the locations of L and C in Fig. 6-9(a), repeat Example 6-4 to determine
υc(t) across C.

Solution:

Before t = 0:

υC(0) = υC(0−) = 0 V (assume capacitor initially uncharged),

iL(0) = iL(0−) =
Rs

R2 +Rs
Is =

10
0.2+10

2 = 1.961 A.

After t = 0:

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



iC(0) =−iL(0) =−1.961 A,

υ
′
C(0) =

iC(0)
C

=− 1.961
5×103 =−392.2 V/s,

R = R1 +R2 = 2.01 Ω.

Since R, L, and C are the same as in Example 6-4:

α =
R
2L

= 201 Np/s,

ω0 =
1√
LC

= 200 rad/s,

s1 =−α +
√

α2−ω2
0 =−181 Np/s,

s2 =−α−
√

α2−ω2
0 =−221 Np/s.

Apply new initial conditions:

υC(0) = A1 +A2 = 0,

υ
′
C(0) = s1A1 + s2A2 =−392.2,

which leads to

A1 =− 392.2
s1− s2

=− 392.2
−181− (−221)

=−9.79 V,

A2 =−A1 = 9.79 V,

υC(t) = (A1es1t +A2es2t) u(t),

υC(t) = 9.79(e−221t − e−181t) u(t) V.
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Exercise 6-4 The switch in Fig. E6.4 is moved to position 2 after it had been in position 1 for a long time.
Determine: (a) υC(0) and iC(0), and (b) iC(t) for t ≥ 0.

Figure E6.4

Solution:

Before t = 0:

υC(0) = υC(0−) = 40 V,

iL(0) = iL(0−) = 0 A.

After t = 0:
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iC(0) =−iL(0) = 0 A,

υ
′
C(0) =

iC(0)
C

= 0,

α =
R
2L

=
20

2×1
= 10,

ω0 =
1√
LC

=
1√

1×0.01
= 10.

Since α = ω0, the circuit is critically damped. Apply initial conditions:

υC(t) = (B1 +B2t)e−αt u(t),

υ
′
C(t) = [−(B1 +B2t)αe−αt +B2e−αt ] u(t),

υ
′
C(t) = [(1−αt)B2−αB1]e−alt u(t),

υC(0) = B1,

B1 = υC(0) = 40,

υ
′
C(0) = B2−αB1,

B2 = υ
′
C(0)+αB1,

B2 = 0+10×40 = 400,

iC(t) = Cυ
′
C(t),

= C[(1−αt)B2−αB1]e−αt u(t),

= 0.01[(1−10t)400−10×40]e−10t u(t),

=−40te−10t u(t) A.
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Exercise 6-5 The circuit in Fig. E6.5 is a replica of the circuit in Fig. E6.4, but with the capacitor and
inductor interchanged in location. Determine: (a) iL(0) and υL(0), and (b) iL(t) for t ≥ 0.

Figure E6.5

Solution:

Before t = 0:

υC(0) = υC(0−) = 0 V,

iL(0) = iL(0−) =
40
10

= 4 A.

After t = 0:
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Since the capacitor is initially a short circuit:

υL(0) =−20iL(0) =−20×4 =−80 V,

α =
R
2L

=
20

2×1
= 10,

ω0 =
1√
LC

=
1√

1×0.01
= 10.

The circuit is critically damped.

iL(t) = (B1 +B2t)e−αt u(t),

i′L(t) = [(1−αt)B2−αB1]e−αt u(t),

B1 = iL(0) = 4,

B2 = i′L(0)+αB1 =
υL(0)

L
+αB1,

=−80
1

+10×4 =−40.

Hence
iL(t) = 4(1−10t)e−10t u(t) A.
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Exercise 6-6 Repeat Example 6-4 after replacing the 8 V source with a short circuit and changing the value
of R1 to 1.7 Ω.

Solution:

Before t = 0:

where we used source transformation on (Is,Rs). From the circuit

υ(0) = υ(0−) = IsRs = 20 V,

iL(0) = iL(0−) = 0 A.

After t = 0:
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υ
′(0) =

iC(0)
C

=− iL(0)
C

= 0,

α =
R
2L

=
R1 +R2

2L
=

1.7+0.2
2×0.005

= 190,

ω0 =
1√
LC

=
1√

0.005×0.005
= 200,

ωd =
√

ω2
0 −α2 =

√
2002−1902 = 62.45,

υ(t) = (D1 cosωdt +D2 sinωdt)e−αt u(t),

υ(0) = D1,

D1 = υ(0) = 20,

D2 =
α υ(0)

ωd
=

190×20
62.45

= 60.85,

υ(t) = (20cos62.45t +60.85sin62.45t)e−190t u(t) V.
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Exercise 6-7 Determine the initial and final values for iL in the circuit of Fig. E6.7, and provide an expression
for iL(t).

Solution:

Before t = 0:

υC(0) = 0.015(40 Ω ‖ 80 Ω) = 0.015
40×80
40+80

= 0.4,

iL(0) =
υC(0)

80
=

0.4
80

= 0.005.

After t = 0:
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i′L(0) =
υL(0)

L
=

υC(0)
L

=
0.4
2

= 0.2,

iL(∞) = 0.015 (L acts like a short circuit at t = ∞)

α =
1

2RC
=

1
2×40×0.005

= 2.5,

ω0 =
1√
LC

=
1√

2×0.005
= 10 rad/s,

ωd =
√

ω2
0 −α2 = 9.68 rad/s.

iL(t) = [iL(∞)+ e−αt(D1 cosωdt +D2 cosωdt)],

D1 = iL(0)− iL(∞) = 0.005−0.015 =−0.010,

D2 =
i′L +α[iL(0)− iL(∞)]

ωd
= 0.01808.

Hence,
iL(t) =

{
15− [10cos9.68t−18.08sin9.68t]e−2.5t} mA.
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Exercise 6-8 In the parallel RLC circuit shown in Fig. 6-13(b), how much energy will be stored in L and C
at t = ∞?

Solution: At t = ∞, L is a short circuit:

vC(∞) = 0,

wC(∞) = 0,

iL(∞) = Is,

wL(∞) =
1
2

L i2L(∞) =
1
2

LI2
s .
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Exercise 6.9 Develop an expression for iC(t) in the circuit of Fig. E6.14 for t ≥ 0.

Figure E6.9

Solution:

Before t = 0:

υC(0) = 0,

iL(0) = 0.

After t = 0:

i′L(0) =
υL(0)

L
=

υC(0)
L

= 0,

iL(∞) = I0,

α =
1

2RC
=

1
2×∞×C

= 0,

ω0 =
1√
LC

.

Since α is less than ω0, the circuit is underdamped:

ωd =
√

ω2
0 −α2 = ω0,

D1 = iL(0)− iL(∞) = 0− I0 =−I0,

D2 =
i′L(0)+αD1

ωd
=

0−0× I0

ω0
= 0,

iL(t) = iL(∞)+ [D1 cosωdt +D2 sinωdt]e−αt ,

iL(t) = I0− I0 cosω0t = I0(1− cosω0t),

iC(t) = I0− iL(t) = I0− (I0− I0 cosω0t)

= I0 cosω0t.

Hence, without a resistor in the circuit, the circuit behaves like an oscillator.
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Exercise 6.10 For the circuit in Fig. E6.10, determine iC(t) for t ≥ 0.

Figure E6.10

Solution:

Before t = 0, there are no sources:

υC(0) = 0,

iL(0) = 0.

At t = 0:

iC(0) = 2− iL(0) = 2,

i′L(0) =
υL(0)

L
=

R iC(0)
L

=
3×2

2
= 3.
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After t = 0:

R iL(t)+L
diL
dt

= R iC(t)+ vC(t),

iL(t) = 2− iC(t),

diL
dt

=−diC
dt

,

R[2− iC(t)]−L
diC
dt

= R iC(t)+υC(t),

2R−L
diC
dt

= 2R iC(t) = υC(t),

−LC
d2iC
dt2 = 2RC

diC
dt

+C
dυC

dt
,

d2iC
dt2 +

2R
L

diC
dt

+
1

LC
iC(t) = 0,

i′′C +
2R
L

i′C +
1

LC
iC = 0,

i′C(0) =−i′L(0) =−3,

iC(∞) = 0,

a =
2R
L

=
2×3

2
= 3,

b =
1

LC
=

1
2×0.02

= 25,

α =
a
2

= 1.5,

ω0 =
√

b = 5.

The circuit is underdamped:

ωd =
√

ω2
0 −α2 =

√
25−1.52 = 4.77,

D1 = iC(0)− iC(∞) = 2−0 = 2,

D2 =
i′C(0)+αD1

ωd
=
−3+1.5×2

4.77
= 0,

iC(t) = [iC(∞)+(D1 cosωdt +D2 sinωdt)e−αt ] u(t),

iC(t) = (2e−αt cos4.77t) u(t) A.
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Exercise 6.11 Given the component values in the Multisim circuit of Fig. 6-18, what are the values of ω0
and α for the circuit response?

Solution:

ω0 =
1√
LC

=
1√

0.3×5.33×10−3
= 25.0 rad/s,

α =
R
2L

=
1

2×0.3
= 1.67 Np/s,

ωd =
√

ω2
0 −α2 =

√
25.02−1.672 = 24.95 rad/s.

Exercise 6-12 Is the natural response for the circuit in Fig. 6-18 over-, under-, or critically damped? You
can determine this both graphically (from the oscilloscope) and mathematically, by comparing ω0 and α .

Solution: α < ω0, so the circuit is underdamped, as is evident in the circuit’s oscillatory response.
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Exercise 6-13 Modify the value of R in the circuit of Fig. 6-18 so as to obtain a critically damped response.

Solution: For a critically damped circuit, α = ω0:

α =
R
2L

= ω0 = 25.0,

R
2×0.3

= 25.0,

R = 15.0 Ω.

Exercise 6-14 Calculate ω0, α , and ωd for the RLC circuit in Fig. 6-22. How do ω0 and ωd compare with
the angular frequency of the current source? This result, as we will learn later when we study resonant circuits
in Chapter 9, is not at all by coincidence.

Solution:

ω0 =
1√
LC

=
1√

10−3×10−6
= 31.6×103,

α =
1

2RC
=

1
2×103×10−6 = 500,

ωd =
√

ω2
0 −α2 =

√
(31.6×103)2−5002 = 31.6×103 rad/s.

The angular frequency of the current source is:

ωsrc = 2π fsrc = 2π×5033 = 31.6×103 rad/s,

which is the same as ω0 and ωd.
Exercise 6-15 Ideally, we would like the response of the RFID tag to take a very long time to decay down
to zero, so as to contain as many digital bits as possible. What determines the decay time? Change the values
of some of the components in Fig. 6-22 so as to decrease the damping coefficient by a factor of 2.
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Solution: The decay time of the RFID is determined by the damping coefficient α . To reduce α by a factor of
two:

α =
1

2RC
=

500
2

= 250.

Leave C unchanged at 1 µF and solve for R:

1
2R×10−6 = 250,

or
R = 2000 Ω.
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Exercise 7-1 Provide an expression for a 100-V, 60-Hz voltage that exhibits a minimum at t = 0.

Solution:

υ(t) = Acos(2π f t +φ),

A = 100 V (given),

f = 60 Hz (given).

At t = 0, υ(t) is a minimum. Hence,

υ(0) =−A = Acosφ1 =⇒ φ = 180◦,

and
υ(t) = 100cos(120π +180◦) V.
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Exercise 7-2 Given two current waveforms:

i1(t) = 3cosωt,

i2(t) = 3sin(ωt +36◦),

does i2(t) lead or lag i1(t) and by what phase angle?

Solution:

i1(t) = 3cosωt,

i2(t) = 3sin(ωt +36◦)

= 3cos(90◦−ωt−36◦)

= 3cos(ωt +36−90◦)

= 3cos(ωt−54◦).

Since φ2 < φ1, i2(t) lags i1(t) by 54◦.
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Exercise 7-3 Express the following complex functions in polar form:

z1 = (4− j3)2,

z2 = (4− j3)1/2.

Solution:

z1 = (4− j3)2

= [ +
√

42 +32 e− j tan−1 3/4]2 = (5e− j36.87◦)2 = 25e− j73.74◦

Z2 = (4− j3)1/2

=
[

+
√

42 +32 e− j tan−1 3/4
]1/2

=±
√

5 e− j18.43◦ .
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Exercise 7-4 Show that
√

2 j =±(1+ j).

Solution: √
2 j =

√
2e j90◦

=±
√

2 e j45◦

=±
√

2
(

cos45◦+ j sin45◦

2

)
=±
√

2

(√
2+ j

√
2

2

)
=±(1+ j).
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Exercise 7-5 Determine the phasor counterparts of the following waveforms:
(a) i1(t) = 2sin(6×103t−30◦) A,
(b) i2(t) =−4sin(1000t +136◦) A.

Solution:

i1(t) = 2sin(6×103t−30◦) A

= 2cos(6×103t−30◦−90◦) A.

Hence, φ1 =−120◦.

I1 = 2∠−120◦ A,

i2(t) =−4sin(1000t +136◦) A

= 4sin(1000t +136◦−180◦) A

= 4cos(1000t +136◦−180◦−90◦) A

= 4cos(1000t−134◦) A.

Hence φ2 =−134◦,
I2 = 4∠−134◦ A.
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Exercise 7-6 Obtain the time-domain waveforms (in standard cosine format) corresponding to the following
phasors, at angular frequency ω = 3×104 rad/s:

(a) V1 = (−3+ j4) V,
(b) V2 = (3− j4) V.

Solution:
(a)

V1 = (−3+ j4) V

=
√

32 +42 e j126.87◦ (second quadrant),

υ1(t) = 5cos(3×104t +126.87◦) V.

(b)

V2 = (3− j4) V

=
√

32 +42 e j(−53.13◦) (fourth quadrant),

υ2(t) = 5cos(3×104t−53.13◦) V.
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Exercise 7-7 At ω = 106 rad/s, the phasor voltage across and current through a certain element are given
by: V = 4∠−20◦ V and I = 2∠70◦ A. What type of element is it?

Solution:

Z =
V
I

=
4e− j20◦

2e j70◦ = 2e− j90◦ =− j2 Ω.

Hence, it is a capacitor and from

− j2 =
− j
ωC

,

C =
1

2ω
= 0.5 µF.
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Exercise 7-8 Repeat the analysis of the circuit in Example 7-4 for υs(t) = 20cos(2×103t +60◦) V, R =
6 Ω, and L = 4 mH.

Solution:

Step 1:

υs(t) = 20cos(2×103t +60◦),

Vs = 20e j60◦ .

Step 2: Circuit to Phasor Domain

ZL = jωL = j2×103×4×10−3 = j8 Ω.

Step 3: KVL in Phasor Domain

RI+ jωLI = Vs,

6I+ j8I = 20e j60◦ .

Step 4: Solve for Unknown Variable

I =
20e j60◦

6+ j8
=

20e j60◦

10e j53.13◦ = 2∠6.9◦ A.

Find Inductor Voltage:

VL = jωLI = ( j8)(2∠6.9◦)

= 16∠96.9◦ V.
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Step 5: Convert Back to Time Domain

υL(t) = Re[VLe jωt ]

= Re[16e j96.9◦e j2×103t ].

υL(t) = 16cos(2×103t +96.9◦) V.
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Exercise 7-9 Determine the input impedance at ω = 105 rad/s for each of the circuits in Fig. E7-9.

Solution:
(a)

Zi = ZL +ZC

= jωL− j
ωC

= j×105× (0.1×10−3)− j
(105)(2×10−6)

= j5 Ω.

(b)
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Zi =
(

1
ZC

+
1

ZL

)−1

=
(

jωC +
1

jωL

)−1

=
[
−(105)(2×10−6)

j
+

1
j(105)(0.1×10−3)

]−1

=
[

−2+1
j(105)(0.1×10−3)

]−1

=
[

−1
j(105)(0.1×10−3)

]−1

=− j10 Ω.
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Exercise 7-10 Convert the Y-impedance circuit in Fig. E7-10 into a ∆-impedance circuit.

Figure E7-10

Solution:

Z1 = j5 Ω,

Z2 = j5 Ω,

Z3 =− j10 Ω,

Z1Z2 +Z2Z3 +Z1Z3 = ( j5)( j5)+( j5)(− j10)+( j5)(− j10)

= j225−2× j250

=−25+100

= 75 (Ω)2.

From Eq. (7.86a),

Za =
Z1Z2 +Z2Z3 +Z1Z3

Z1

=
75
j5

=− j15 Ω.

From Eq. (7.86b),

Zb =
Z1Z2 +Z2Z3 +Z1Z3

Z2

=
75
j5

=− j15 Ω.

From Eq. (7.86c),

Zc =
Z1Z2 +Z2Z3 +Z1Z3

Z3

=
75
− j10

=− j7.5 Ω.

So
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Exercise 7-11 Determine VTh and ZTh for the circuit in Fig. E7-11 at terminals (a,b).

Figure E7-11

Solution:

VTh:

KCL at Va:

−I+
Va

5
−5I = 0,

6I =
Va

5
.

Also,

I =
10−Va

10+ j30
.

Hence,

6
(

10−Va

10+ j30

)
=

Va

5
,

60
10+ j30

= Va

(
6

10+ j30
+

1
5

)
.

Simplifying leads to

Va =
60

8+ j6

VTh = Va = 6∠−36.9◦ V.

RTh:

Remove source and add external source Vext:
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At node Va:
−I+ I2−5I− Iext = 0.

Also,

I2 =
Vext

Z2
=

Vext

5
,

I =
Vext

Z1
=

Vext

10+ j30
.

Substitution and simplification lead to

Iext = (0.26− j0.18)Vext.

Hence,

RTh =
Vext

Iext
=

1
0.26− j0.18

= (2.6+ j1.8) Ω.
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Exercise 7-12 Establish the relative phasor diagram for the circuit in Fig. E7-12 with V as the reference
phasor.

Solution:

I1 = VY1

= 0.4V,

I2 = VY2

= j0.6V,

I0 = I1 + I2

= 0.4V+ j0.6V

= (0.721∠56.3◦)V.
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Exercise 7-13 Repeat Example 7-11, but use only two stages of RC phase shifters.

Solution:

At node V1 in phasor domain:
V1−Vs

ZC
+

V1

R
+

V1

ZC +R
= 0.

Also,

Vout = V2 = V1
R

ZC +R
.

Substitution and simplification leads to

Vout

Vs
=

R4ω4C4−R2ω2C2 + j3ω3R3C3

(R4ω4C4−1)2 +9ω2R2C2 .

Hence

φ2 =− tan−1
(

3ω3R3C3

R4ω4C4−R2ω2C2

)
=− tan−3

(
3ωRC

ω2R2C2−1

)
.

For φ2 = 120◦, ω = 103 rad/s, and C = 1 µF, solution for R gives

R = 2.189 kΩ' 2.2 kΩ.

[Mathematically, we get a second solution, namely R = −456.8, which we reject.] Using R = 2.2 kΩ in the
expression for Vout/Vs gives ∣∣∣∣Vout

Vs

∣∣∣∣= 0.634.
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Exercise 7-14 Design a two-stage RC phase shifter that provides a phase shift of negative 120◦ at ω = 104

rad/s. Assume C = 1 µF.

Solution: For negative phase shift, flip capacitor and inductor positions.

KVL at node 1:
V1−Vs

R
+

V1

ZC
+

V1−V2

R
= 0. (1)

Also,

Vout = V2 = V1
ZC

ZC +R
.

Solution leads to

Vout

Vs
=
−(−1+R2ω2C2 + j3ωRC)
(−1+R2ω2)2 +9ω2R2C2 ,

and

φ2 = tan−1
(

3ωRC
ω2R2C2−1

)
.

For φ2 =−120◦,

tan(−120◦) = 1.732 =
(

3ωRC
ω2R2C2−1

)
.

For ω = 104 rad/s and C = 1 µF,

R = 218.89 Ω or R =−45.68 Ω.

Negative resistance solution is rejected. Hence,

R' 220 Ω.
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Exercise 7-15 Write down the node-voltage matrix equation for the circuit in Fig. E7-15.

Solution: KCL at node V1:

−2+4∠60◦+(V1−V2)(2+ j2) = 0,

V1(2+ j2)+V2[−(2+ j2)] = 2−4∠60◦. (1)

KCL at node V1:

−4∠60◦+(V2−V1)(2+ j2)+V2(− j4) = 0,

V1[−(2+ j2)]+V2(2− j2) = 4∠60◦. (2)

Put (1) and (2) into matrix form:[
(2+ j2) −(2+ j2)
−(2+ j2) (2− j2)

][
V1
V2

]
=
[

2−4e j60◦

4e j60◦

]
.

Alternatively, direct application of Eq. (7.102) leads to the same matrix equation.
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Exercise 7-16 Write down the mesh-current matrix equation for the circuit in Fig. E7-16.

Figure E7-16

Solution: For mesh current I1:

−12+2I1 +(3+ j6)(I1− I2) = 0,

I1(5+ j6)+ I2[−(3+ j6)] = 12. (1)

For mesh current I2:

j6+(3+ j6)(I2− I1)+4I2 = 0,

I1 + I2[−(3+ j6)]+ I2(7+ j6) =− j6.. (2)

Put (1) and (2) into matrix form: [
(5+ j6) −(3+ j6)
−(3+ j6) (7+ j6)

][
I1
I2

]
=
[

12
− j6

]
.

Alternatively, direct application of Eq. (7.108) leads to the same matrix equation.
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Exercise 7-17 Suppose the input voltage in the circuit of Fig. 7-38 is a 10 V amplitude square wave. What
would the output look like?

Solution:

υout(t) = |υin(t)|−2VF

= 10−2×0.7 = 8.6 V.
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Exercise 7-18 Determine the amplitude and phase of V(6) in the circuit of Example 7-21, relative to those
of V(1).

Solution:

The figure above shows a plot of V(6) and V(1) as in Fig. 7-42. Note that x1 for V(1) is 2.7250 µs and x2 for
V(6) is 2.7459 µs. The time difference between the two values is

∆t = 2.7459 µs−2.7250 µs = 0.0209 µs,

given that f = 10 MHz, T = 0.1 µs and

φ = 360◦
(

0.0209
0.1

)
= 75.24◦.
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Exercise 8-1 Determine the average and rms values of the waveform

υ(t) = 12+6cos400t V.

Solution: From Eq. (8.5),

Vav =
1
T

∫ T

0
υ(t) dt.

ω = 2π f =
2π

T
= 400 rad/s,

T =
2π

400
s.

Vav =
400
2π

∫ 2π/400

0
(12+6cos400t) dt

=
400
2π

[∫ 2π/400

0
12 dt +

∫ 2π/400

0
6cos(400t) dt

]
.

The average of a cosine function over a full cycle is zero. Hence, second term = 0.

Vav =
400
2π

(12t)
∣∣2π/400
0

= 12 V.

For Eq. (8.14),

Vrms =

√
1
T

∫ T

0
x2(t) dt

=

√
400
2π

∫ 2π/400

0
(12+6cos400t)2 dt

=
[

400
2π

(∫ 2π/400

0
144 dt +

∫ 2π/400

0
144cos400t dt +

∫ 2π/400

0
36cos2(400t) dt

)]1/2

.

First term = 144
Second term = 0
Third term:

400
2π

∫ 2π/400

0
36cos2(400t) dt = 18.

Hence,
VRMS =

√
144+0+18 = 12.73 V.
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Exercise 8-2 Determine the average and rms value of the waveform

i(t) = 8cos377t−4sin(377t−30◦) A.

Solution: Determine average and rms value of the waveform.

Iav: Average of sinusoid is zero so the average of the sum of two sinusoids is also zero.

Hence, Iav = 0.

Irms: From Eq. (8.14):

Irms =

√
1
T

∫ T

0
x2(t) dt

=
[

377
2π

∫ 2π/377

0
(8cos(377t)−4sin(377t−30◦))2 dt

]1/2

=
{

377
2π

[
64cos2(377t)−64cos(377t)sin(377t−30◦)

+16sin2(377t−30◦)
]

dt
}1/2

=
{

377
2π

[
64
∫ 2π/377

0
cos2(377t) dt

−64
∫ 2π/377

0
cos(377t)sin(377t−30◦) dt

+16
∫ 2π/377

0
sin2(377t−30◦) dt

]}1/2

.

Use the following identities: ∫
cos2 x dx =

1
4

sin(2x)+
x
2∫

sin2 x dx =−1
4

sin(2x)+
x
2∫

cos(ax)sin(ax+b) dx =
x
2

sin(b) =
cos(2ax+b)

4a
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For first term: ∫ 2π/377

0
cos2(377t) dt =

1
377

∫ 2π

0
cos2(x) dx

=
1

377

[
1
4

sin(2x)+
x
2

]∣∣∣∣2π

0
=

π

377
.

For second term:∫ 2π/377

0
cos(377t)sin(377t−30◦) dt =

t
2

sin(−30◦)− cos(754t−30◦)
1508

∣∣∣∣2π/377

0

=
π

377
sin(−30◦)− cos(−30◦)

1508
+

cos(−30◦)
1508

=
π

377
sin(−30◦).

For third term:∫ 2π/377

0
sin2(377t−30◦) dt =

1
377

[
−1

4
sin(−60◦)+

1
4

sin(−60◦)+
2π−30◦

2
+

30◦

2

]
=

π

377
.

Irms =
{

377
2π

[
64π

377
− 64π

377
sin(−30◦)+

16π

377

]}1/2

= (56)1/2

= 7.48 A.
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Exercise 8-3 The voltage across and current through a certain load are given by:

υ(t) = 8cos(754t−30◦) V,

i(t) = 0.2sin754t A.

What is the average power consumed by the load, and by how far in time is i(t) shifted relative to υ(t)?

Solution: From the expressions for the voltage and current:

φv =−30◦, Vm = 8 V,

φi =−90◦, Im = 0.2 A.

Using Eq. (8.23),

Pav =
VmIm

2
cos(φv−φi)

=
8×0.2

2
cos(−30◦− (−90◦))

= 0.4 W.

Also,
φv−φi =−30◦− (−90◦) = 60◦ =

π

3
radians.

Hence,

∆t =
(φv−φi

ω
=

π

3 (radians)

754
( radians

second

) = 1.39 ms.
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Exercise 8-4 The current flowing into a load is given by i(t) = 2cos2500t (A). If the load is known to
consist of a series of two passive elements, and S = (10− j8) (VA), determine the identities of the elements
and their values.

Solution: From the expression for i(t):

Im = 2 A, and φi = 0◦.

From Eq. (8.31b),

Irms =
Im√

2
e jφi =

2√
2

= 1.414 A.

From the expression for S,
Pav = 10 W.

Using Eq. (8.40a),

Pav = I2
rmsR =⇒ R =

10
(1.414)2 = 5 Ω.

Also,
Q =−8 (VAR).

Using Eq. (8.40b),

Q = I2
rmsX

X =
−8

(1.414)2 =−4 Ω.

Hence,

− j4 =
− j
ωC

.

At ω = 2500 rad/s,

C =
1

4ω
= 100 µF.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Exercise 8-5 At 60 Hz, the impedance of a RL load is ZL = (50+ j50) Ω. (a) What is the value of the power
factor of ZL and (b) what will be the new power factor if a capacitance C = 1

12π
mF is added in parallel with

the RL load?

Solution:
(a)

R = 50 Ω, X = 50 Ω,

φZ1 = tan−1
(

X
R

)
= tan−1

(
50
50

)
= 45◦.

From Eq. (8.49a),

pf 1 = cos(φZ)

= cos(45◦)

= 0.707.

(b) With
( 1

12 π
)

mF capacitor at 60 Hz:

ZC =
− j(

10−3

12π

)
(60)(2π)

=− j100 Ω.

Parallel combination:

ZC ‖ ZL =
(− j100)(50+ j50)

50− j50
= 100 Ω.

For purely real impedance,
φZ = tan−1(0) = 0◦,

and
pf 2 = cos(0◦) = 1.
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Exercise 8-6 Use Multisim to simulate the circuit in Fig. 8-15. Connect Channel B of the oscilloscope
across the voltage source Vs. Vary CM over its full range, noting the phase difference between the two channels
of the oscilloscope at CM = 0, CM = 25 µF, and CM = 50 µF.

Solution: The best way to observe the changes that CM has on the phase difference between VS and V7 is to
run the Interactive Simulation, but set the Maximum Time Step (under Simulate → Interactive Simulation
Settings → Maximum Time Step) to something very small (e.g., 1e-7 seconds). This will force the
oscilloscope trace to plot slowly with respect to any interactive adjustment of the value of CM (using the mouse
slider or the keyboard).

• Notice there is a small phase difference at CM = 50 µF. Fig. E8-8a shows the plot of the oscilloscope
trace with cursors.

For CM = 50 µF, x1 on VS = 1.2500 ms, x2 on V7 = 1.2449 ms.

∆t = 10.2500 ms−10.2449 ms = 0.0051 ms.

Given that f = 1 kHz, T = 1 ms and

φ = 360◦
(

0.0051
1

)
= 1.836◦.

• As one reduces the value of CM, the phase difference disappears. For CM = 25 µF, ∆t = 0 ms.

• However, below 25 µF, the phase difference increases to a maximum difference of −19.47◦.

• For CM = 0 µF, ∆t = 0 ms.
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Figure E8-6b plots the phase difference as a function of CM. This plot was generated in MATLAB software
using Eq. (8.78) and voltage division:

∠V7 = ∠

[(
Rs

Rs +ZLoad+Match

)
Vs

]
.

Note: The angle function in MATLAB software can be used to plot the phase angle in radians of any function.
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Exercise 9-1 A series RL circuit is connected to a voltage source Vs. Obtain an expression for H(ω) =
VR/Vs, where VR is the phasor voltage across R. Also, determine the corner frequency of H(ω).

Solution:

By voltage division,

VR =
R

R+ZL
Vs,

or

H(ω) =
VR

Vs
=

R
R+ jωL

=
R(R− jωL)
R2 +ω2L2 .

Corner frequency ωc is the value of ω at which the magnitude of H(ω) is equal to 1/
√

2 of its peak value. The
magnitude of H(ω) is

M(ω) = |H(ω)|= R√
R2 +ω2L2

,

and its peak value is at ω = 0. Thus
M0 = M(ω)|max = 1.

Setting H(ωc) = 1/
√

2 is equivalent to
1
2

=
R2

R2 +ω2
c L2 ,

whose solution is
ωc =

R
L

.
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Exercise 9-2 Obtain an expression for the input impedance of the circuit in Fig. E9-2, and then use it to
determine the resonant frequency.

Solution:

Zin =
(

1
ZC

+
1

R+ZL

)−1

=
ZC(R+ZL)
R+ZL +ZC

=
(1/ jωC)(R+ jωL)
R+ jωL+(1/ jωC)

=
R+ jωL

(1−ω2LC)+ jωRC

=
[R(1−ω2LC)+ω2RLC]+ j[ωL(1−ω2LC)−ωR2C]

(1−ω2LC)2 +ω2R2C2 .

Resonance occurs when imaginary part of Zin is zero. Thus,

ω0L(1−ω
2
0 LC)−ω0R2C = 0,

which leads to
ω0 = 0,

which is a trivial solution, and

ω0 =

√
1

LC
− R2

L2 .
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Exercise 9-3 Determine: (a) Zin of the prototype circuit shown in Fig. E9-3 at ω = 1 rad/s and (b) Z′in of the
same circuit after scaling it by Km = 1000 and Kf = 1000.

Solution:

(a) Since the circuit contains a dependent source, we use the external voltage source method. Also, current
continuity requires that the current flowing through the 2-Ω resistor be the same as that flowing through the
capacitor. Also I1 = Ix.

KVL gives
−Vex +2Ix− Ix + IxZC = 0,

which leads to
Zin =

Vex

Ix
= (1− j1) Ω [for ω = 1 rad/s and C = 1 F].
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(b) With km = 1000 and kf = 1000,

R′1 = 1000R1 = 1 kΩ,

R′2 = 1000R2 = 2 kΩ,

C′ =
1

kmkf
C = 1 µF,

ω
′ = kfω = 103 rad/s.

Repeat of solution with new values leads to

Z′in = (1− j1) kΩ.
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Exercise 9-4 Convert the following voltage ratios to dB: (a) 20, (b) 0.03, (c) 6×106.

Solution:
(a) 20log20 = 20×1.301 = 26.02 dB.
(b) 20log0.03 = 20× (−1.523) =−30.46 dB.
(c) 20log(6×106) = 20log6+20log106 = 15.56+120 = 135.56 dB.
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Exercise 9-5 Convert the following dB values to voltage ratios: (a) 36 dB, (b) −24 dB, (c) −0.5 dB.

Solution:
(a) (10)36/20 = 63.1.
(b) (10)−24/20 = 0.063.
(c) (10)−0.5/20 = 0.094.
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Exercise 9-6 Generate a Bode magnitude plot for the transfer function

H =
10(100+ jω)(1000+ jω)

(10+ jω)(104 + jω)
.

Solution: We start by converting the transfer function into standard form:

H =
10×100(1+ jω/100)×1000× (1+ jω/1000)

10(1+ jω/10)×104(1+ jω/104)

=
10(1+ jω/ωc2)(1+ jω/ωc3)
(1+ jω/ωc1)(1+ jω/ωc4)

,

where

ωc1 = 10 rad/s,

ωc2 = 100 rad/s,

ωc3 = 103 rad/s,

ωc4 = 104 rad/s.

We note:

constant term 10 =⇒ 20 dB
zero factors with ωc2 and ωc3

pole factors with ωc1 and ωc4 .

Sequential addition of terms leads to the solution shown.
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Exercise 9-7 Determine the functional form of the transfer function whose Bode magnitude plot is shown
in Fig. E9-7, given that its phase angle at dc is 90◦.

Solution: From the plot, the transfer function has:

(1) simple zero factor at ωc1 = 2 rad/s,

(2) simple pole factor at ωc2 = 20 rad/s,

(3) simple zero factor at ωc3 = 500 rad/s,

(4) simple pole factor at ωc4 = 5000 rad/s.

Since at dc, the phase is 90◦, we add a j to the numerator.

H(ω) =
j(1+ jω/2)(1+ jω/500)

(1+ jω/20)(1+ jω/5000)
.
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Exercise 9-8 Show that for the parallel RLC circuit shown in Fig. E9-8, the transfer-impedance transfer
function HZ = VR/Is exhibits a bandpass-filter response.

Solution: From KCL,

VR

(
1
R

+
1

ZC
+

1
ZL

)
= Is,

we obtain the expression

HZ =
VR

Is
=

jωL
(1−ω2LC)+ jωL/R

=
ω2L2− jωLR2(1−ω2LC)

R2(1−ω2LC)2 +ω2L2 .

Resonance occurs when imaginary component is zero:

ω0 = 0 (trivial),

ω0 =
1√
LC

.
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Exercise 9-9 How should R be related to L and C so that the denominator of Eq. (9.66) becomes a simple
pole of order 2? What will the value of Q be in that case?

Solution: Denominator of Eq. (9.66):

(1−ω
2LC)+ jωRC = 1+( jω

√
LC)2 + jωRC.

For perfect square (1+2x+ x2),
jωRC = 2( jω

√
LC),

or
R2C2 = 4LC,

which gives

R = 2

√
L
C

.

From Eq. (9.61),

Q =
ω0L

R
=

1√
LC
× L

2
√

L/C
=

1
2

.
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Exercise 9-10 Is MBR = 1−MBP?

Solution: No, because MBR = |HBR|= |1−HBP| 6= 1−|HBP|= 1−MBP.
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Exercise 9-11 What is the order of the two-stage bandpass-filter circuit shown in Fig. 9-18(a)?

Solution: Intuitively, the circuit suggests that each stage is a single order, so the two stages lead to a second-
order filter. To be certain, however, we should analyze the expression for H(ω) given in Example 9-8 as

H(ω) =
ω2R2C2[ω2R2C2− (1−ω2LC)2 + j3ωRC(1−ω2LC)]

[ω2R2C2− (1−ω2LC)2]2 +9ω2R2C2(1−ω2LC)2

When the imaginary part is zero, the resonant frequency for L = 10 mH, C = 1 µF and R = 2 Ω is

ω0 =
1√
LC

= 104 rad/s,

and
RC = 2×10−6 s.

1. For ω � ω0, ω2LC� 1 and ωRC� 1. Hence, H(ω) simplifies to

H(ω)' ω
2R2C2 for ω � ω0.

Thus, the power of ω is 2, suggesting that the filter is second order.

2. For ω � ω0, ω2LC� 1, and

H(ω)' ω6R2L2C4

ω8L4C4 =
R2

ω2L2 for ω � ω0.

The power of ω is −2, again confirming that H(ω) is a second-order filter.
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Exercise 9-12 Determine the order of H(ω) = Vout/Vs for the circuit in Fig. E9-12.

Solution: Circuit analysis leads to

H(ω) =
jω3RLC2

ω2LC− (1−ω2LC)(1+ jωRC)
.

For ω very large, such that ω2LC >> 1 and ωRC� 1,

H(ω)' 1, ω very large.

For ω very small, such that ω2LC� 1 and ωRC� 1,

H(ω)' jω3RLC2.

Hence, filter is third order.
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Exercise 9-13 Choose values for Rs and Rf in the circuit of Fig. 9-23(b) so that the gain magnitude is 10 and
the corner frequency is 103 rad/s, given that Cf = 1 µF.

Solution: According to Eq. (8.89),

GLP =−Rf

Rs
=−10,

ωLP =
1

RfCf
= 103 rad/s.

With Cf = 1 µF,
Rf = 1 kΩ, and Rs = 100 Ω.
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Exercise 9-14 What are the values of the corner frequencies associated with M1, M2, and M3 of Example
9-10?

Solution: By plotting the expressions for M1, M2, and M3 and determining the angular frequencies at which
each is 1/

√
2 of its peak value, we can show that

ωc1 = 105 rad/s, ωc2 = 0.64ωc1 , and ωc3 = 0.51ωc1 .
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Exercise 9-15 The bandreject filter of Example 9-12 uses two lowpass filter stages and two highpass filter
stages. If three stages of each were used instead, what would the expression for H(ω) be in that case?

Solution:

H(ω) = 50

[(
1

1+ jω/4π×104

)3

+
(

jω/8π×104

1+ jω/8π×104

)3
]

.
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Exercise 10-1 Superimpose onto Fig. 10-4(b) the three source voltages of the ∆ configuration.

Solution:
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Exercise 10-2 Given a balanced ∆-source configuration with a positive phase sequence and V12 = 208∠45◦ V
(rms), determine (a) phase voltages V23 and V31, and (b) V1, V2, and V3 of the equivalent Y-source
configuration.

Solution: (a) For a positive phase sequence, V23 and V31 have the same amplitude as V12, but their phases are
retarded by 120◦ and 240◦, respectively. Hence,

V23 = 208∠45◦−120◦ = 208∠−75◦ V (rms),

V31 = 208∠45◦−240◦ = 208∠−195◦ V (rms).

(b)

V1 =
V12√

3
∠−30◦

=
208√

3
∠45◦−30◦ = 120∠15◦ V (rms)

V2 = V1∠−120◦ = 120∠−105◦ V (rms)

V3 = V1∠−240◦ = 120∠−225◦ V (rms).
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Exercise 10-3 Show graphically why the phase magnitude of V12 of the ∆-source is
√

3 times larger than
the phase magnitude of the Y-source.

Solution:
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Exercise 10-4 Were we to repeat Example 10-2, but with the transmission-line impedances set to zero,
which of the following line-current quantities will change and which will remain the same: (a) amplitudes, (b)
absolute phases, and (c) phases relative to each other?

Solution: (a) Amplitudes will change, (b) absolute phases will change, but (c) relative phases will continue to
be 120◦ apart (between pairs).
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Exercise 10-5 Determine IL1 in the balanced Y-Y network of Fig. 10-8, given that V1 = 120∠0◦ V, ZTL =
(2+ j1) Ω and ZY = (28+ j9) Ω.

Solution:

IL1 =
V1

ZTL +ZY
=

120
(2+ j1)+(28+ j9)

=
120

30+ j10

=
120

31.6e j18.4◦ = 3.80∠−18.4◦ A.
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Exercise 10-6 Prove Eq. (10.26b).

Solution:

cosθ + cos(θ −120◦)+ cos(θ −240◦)

= cosθ + cosθ cos120◦+ sinθ sin120◦+ cosθ cos240◦+ sinθ sin240◦

= cosθ −0.5cosθ +0.86sinθ −0.5cosθ −0.86sinθ

= 0.
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Exercise 10-7 Suppose the circuit shown in Fig. 10-15(a) contains only balanced loads 1 and 2. What value
should C have in order to raise the source’s power factor to 0.92 lagging?

Solution: With only loads 1 and 2,

ST = S1 +S2

= (4800+ j3600)+(7200+ j9600)

= 12000+ j13200 VA

φ = tan−1
(

13200
12000

)
= 47.73◦

pf s = cosφ = 0.67.

To raise it to pf ′s = 0.92, φ has to change to

φ
′ = cos−1(0.92) = 23.07◦

S′T = 12000+ j12000tanφ
′

= (12000+ j5111) VA

QC = 5111−13200 =−8089 VAR.

Also
QC =−2V 2

L ωC,

which leads to
C =

−QC

2V 2
L ω

=
8089

2× (1200)2×2π×60
= 7.45 µF.
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Exercise 10-8 When used on a balanced three-phase load, the two-wattmeter method provided
measurements P1 = 4,800 W and P2 = 10,200 W. What is the total complex power ST of the load?

Solution:

PT = P1 +P2 = 4800+10200 = 15000 W

QT =
√

3(P2−P1) =
√

3(10200−4800) = 9353 VAR.

Hence,
ST = (15000+ j9353) VA.
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Exercise 11-1 Repeat Example 11-1 after moving the dot location on the side of L2 from the top end of the
coil to the bottom.

Solution: Replacing M with −M in Eqs. (11.10a and b) leads to

−Vs +
(

R1−
j

ωC
+ jωL1

)
I1 + jωMI2 = 0

jωMI1 +
(

jωL2−
j

ωC
+RL

)
I2 = 0.

Solution is identical to that in Example 11-1 except that M should be replced with −M in Eq. (11.11). Hence,

iL(t) = 139.5cos(2π×103t +142.2◦−180◦)

= 139.5cos(2π×103t−37.8◦) mA.
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Exercise 11-2 Repeat Example 11-3 for the two in-series inductors in Fig. 11-6(a), but with the dot location
on L2 being on the top end.

Solution: Replacing M with −M everywhere in the expressions for V1 and V2 in Example 11-3 leads to

Leq = L1 +L2− (−2M)

= L1 +L2 +2M.
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Exercise 11-3 The expression for Zin given by Eq. (11.25) was derived for the circuit in Fig. 11-8, in which
both dots are on the upper end of the coils. What would the expression look like were the two dots located on
opposite ends?

Solution: If the two dots are on opposite ends, M should be replaced with −M, but since Eq. (11.24) is
proportional to M2, the expression for Zin remains unchanged.
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Exercise 11-4 What are the element values of the Π-equivalent circuit of the transformer in Fig. 11-11(a)?

Solution: According to Eqs. (11.31a to c),

La =
L1L2−M2

L1−M

=
(5/ω)(20/ω)− (2/ω)2

(5/ω)− (2/ω)
=

32
ω

,

Lb =
L1L2−M2

L2−M
=

5.33
ω

,

Lc =
L1L2−M2

M
=

48
ω

.
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Exercise 11-5 Determine the Thévenin equivalent of the circuit to the right of terminals (a,b) in Fig. E11-5.

Solution: Application of Fig. 11-15(b) leads to

ZTh =
32− j64

n2 =
32− j64

16
= (2− j4) Ω,

VTh =−Vs2

n
=
−12e j60◦

4
=−3e j60◦ V.

The negative sign accounts for the fact that the dots are on opposite sides of the transformer.
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Exercise 11-6 An autotransformer is used to step up the voltage by a factor of 10. If N = 200, what are the
values of N1 and N2?

Solution:
V2

V1
=

N
N2

,

or
10 =

200
N2

N2 = 20

and
N = N1 +N2 N1 = 180.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Exercise 11-7 Determine Ix in the circuit of Fig. 11-18 after replacing the 20-Ω resistor with an open circuit.

Solution: Repeating the solution in Example 11-10 after replacing the 20-Ω resistor with an open circuit gives

−36+(10+50)I1−50I2 +V1 = 0,

−50I1 +(30+40+50)I2−V2 = 0.

Also,

V2 =−4V1,

I2 =−I1

4
.

Solution leads to
Ix = I2 =−0.097 A.
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Exercise 12-1 If x(t) is the rectangular pulse shown in Fig. E12-1(a), determine its time derivative x′(t) and
plot it.

Solution:

x(t) = 2u(t−3)−2u(t−4),

x′(t) = 2δ (t−3)−2δ (t−4).
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Exercise 12-2 Determine the Laplace transform of (a) [sin(ωt)] u(t), (b) e−at u(t), and (c) t u(t). Assume
all waveforms are zero for t < 0.

Solution:
(a) [sinωt] u(t)

F(s) =
∫

∞

0−
[sinωt] u(t) e−st dt.

Application of the identity

sinωt =
e jωt − e− jωt

2 j
,

F(s) =
1
2 j

∫
∞

0
e jωte−st dt− 1

2 j

∫
∞

0
e− jωte−st dt

=
1
2 j

(
e( jω−s)t

jω− s
− e−( jω+s)t

−( jω + s)

)∣∣∣∣∣
∞

0

=
1
2 j

(
−1

jω− s
+
−1

jω + s

)
=

ω

s2 +ω2 .

(b) e−at u(t)

F(s) =
∫

∞

0−
e−at u(t) e−st dt

=
∫

∞

0
e−(a+s)t dt =

e−(a+s)t

−(a+ s)

∣∣∣∣∣
∞

0

=
1

s+a
.

(c) t u(t)

F(s) =
∫

∞

0
te−st dt.

Using the integral relation ∫
xeax dx =

eax

a2 (ax−1),

we have

F(s) =
e−st

s2 (−st−1)
∣∣∣∣∞
0

=
1
s2 .
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Exercise 12-3 Determine L [sinω(t−T ) u(t−T )].

Solution: According to Exercise 6-9(a),

sinωt
ω

s2 +ω2 .sinωt
ω

s2 +ω2 .

Application of the shift property given by Eq. (6.53)

f (t−T ) u(t−T ) e−T s F(s)

leads to
sinω(t−T ) u(t−T ) e−T s ω

s2 +ω2 .
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Exercise 12-4 (a) Prove Eq. (12.27) and (b) apply it to determine L [e−at cosωt].

Solution:
(a) If

f (t) F(s),

then ∫
∞

0−
e−at f (t) e−st dt =

∫
∞

0−
f (t) e−(s+a)t dt

=
∫

∞

0−
f (t) e−s′t dt

= F(s′)

= F(s+a),

where we temporarily used the substitution
s′ = s+a.

Hence,
e−at f (t) F(s+a).

(b) Since
cosωt

s
s2 +ω2 ,

it follows that

e−at cosωt
(s+a)

(s+a)2 +ω2 .
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Exercise 12-5 Obtain the Laplace transform of: (a) f1(t)= 2(2−e−t) u(t) and (b) f2(t) = e−3t cos(2t +30◦) u(t).

Solution:
(a)

f1(t) = 2(2− e−t) u(t)

= (4−2e−t) u(t).

By entries 2 and 3 in Table 12-2,

F1(s) =
4
s
− 2

s+1
=

4s+4−2s
s(s+1)

=
2s+4

s(s+1)
.

(b)

f2(t) = e−3t cos(2t +30◦) u(t)

= e−3t fa(t),

with
fa(t) = cos(2t +20◦) u(t).

Applying entry #12 in Table 12-2 gives

Fa(s) =
scos30◦−2sin30◦

s2 +4
=

0.866s−1
s2 +4

.

Application of Property 5 in Table 12-1 leads to

F2(s) = Fa(s+3)

=
0.866(s+3)−1

(s+3)2 +4

=
0.866s+1.6
s2 +6s+13

.
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Exercise 12-6 Apply the partial-fraction expansion method to determine f (t), given that its Laplace
transform is

F(s) =
10s+16

s(s+2)(s+4)
.

Solution: By partial-fraction expansion,

F(s) =
A1

s
+

A2

s+2
+

A3

s+4
,

with

A1 = s F(s)|s=0

=
10s+16

(s+2)(s+4)

∣∣∣∣
s=0

= 2,

A2 = (s+2) F(s)|s=−2

=
10s+16
s(s+4)

∣∣∣∣
s=−2

=
−20+16
−2(2)

= 1,

A3 = (s+4) F(s)|s=−4

=
10s+16
s(s+2)

∣∣∣∣
s=−4

=
−40+16
−4(−2)

=−3.

Hence,

F(s) =
2
s

+
1

s+2
− 3

s+4
,

and
f (t) = [2+ e−2t −3e−4t ] u(t).

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Exercise 12-7 Determine the inverse Laplace transform of

F(s) =
4s2−15s−10

(s+2)3 .

Solution:

F(s) =
4s2−15s−10

(s+2)3 .

By partial-fraction expansion,

F(s) =
B1

s+2
+

B2

(s+2)2 +
B3

(s+2)3 ,

with

B3 = (s+2)3 F(s)
∣∣
s=−2

= 4s2−15s−10
∣∣
s=−2 = 16+30−10 = 36,

B2 =
d
ds

[(s+2)3 F(s)]
∣∣
s=−2

=
d
ds

(4s2−15s−10)
∣∣
s=−2 = 8s−15|s=−2 =−31,

B1 =
1
2

d
ds2 (4s2−15s−10)

∣∣
s=−2 = 4.

Hence,

F(s) =
4

s+2
− 31

(s+2)2 +
36

(s+2)3 .

By entries 3, 6, and 7 in Table 12-2,

f (t) = (4−31t +18t2)e−2t u(t).
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Exercise 12-8 Determine the inverse Laplace transform of

F(s) =
2s+14

s2 +6s+25
.

Solution:

F(s) =
2s+14

s2 +6s+25

=
2s+14

(s+3− j4)(s+3+ j4)
.

By partial fraction expansion

F(s) =
B1

s+3− j4
+

B∗1
s+3+ j4

,

with

B1 = (s+3− j4) F(s)|s=−3+ j4

=
(2s+14)

(s+3+ j4)

∣∣∣∣
s=−3+ j4

=
−6+ j8+14

j8
= 1− j =

√
2 e− j45◦ .

Hence,

F(s) =
√

2 e− j45◦

s+3− j4
+
√

2 e j45◦

s+3+ j4
.

By entry #15 in Table 12-2,
f (t) = [2

√
2 e−3t cos(4t−45◦)] u(t).
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Exercise 12-9 Convert the circuit in Fig. E12.9 into the s-domain.

Solution:
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Exercise 13-1 Obtain the Fourier-series representation for the waveform shown in Fig. E13.1.

Solution: For the cycle from t =−2 s to t = 2 s, the waveform is given by

f (t) =

{
5t for −2≤ t ≤ 0
10−5t for 0≤ t ≤ 2.

With T = 4 s and ω0 = 2π/T = π/2 rad/s,

a0 =
1
T

∫ 2

−2
f (t) dt

=
1
4

[∫ 0

−2
5t dt +

∫ 2

0
(10−5t) dt

]
= 0,

an =
2
T

∫ T/2

−T/2
f (t)cosnω0t dt

=
1
2

[∫ 0

−2
5t cos

nπt
2

dt +
∫ 2

0
(10−5t)cos

nπt
2

dt
]
.

Using the integral relationship given in Appendix D-2 as∫
xcosax dx =

1
a2 cosax+

x
a

sinax,

we have
an =

20
n2π2 (1− cosnπ).

Similarly, using the relation ∫
xsinax dx =

1
a2 sinax =

x
a

cosax,

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



we have

bn =
2
T

∫ T/2

−T/2
f (t) sinnω0t dt

=
1
2

[∫ 0

−2
5t sin

nπt
2

dt +
∫ 2

0
(10−5t)sin

nπt
2

dt
]

=
10
nπ

(1− cosnπ).

Hence,

f (t) =
∞

∑
n=1

[
20

n2π2 (1− cosnπ)cos
nπt
2

+
10
nπ

(1− cosnπ)sin
nπt
2

]
.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits c© 2015 National Technology Press



Exercise 13-2 Obtain the line spectra associated with the periodic function of Exercise 13.1.

Solution:

An =
√

a2
n +b2

n

=

{[
20

n2π2 (1− cosnπ)
]2

+
[

10
nπ

(1− cosnπ)
]2
}1/2

= (1− cosnπ)
20

n2π2

√
1+

n2π2

4
,

φn =− tan−1
(

bn

an

)
=− tan−1

(nπ

2

)
.

We note that An = 0 when n = even.
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Exercise 13-3 (a) Does the waveform f (t) shown in Fig. E13.3 exhibit either even or odd symmetry? (b)
What is the value of a0? (c) Does the function g(t) = f (t)−a0 exhibit either even or odd symmetry?

Solution:
(a)

f (t) 6= f (−t) no even symmetry

f (t) 6=− f (−t) no odd symmetry

(b)

a0 =
2×1+3×1+(−1)×1

4
= 1.

(c) g(t) = [ f (t)−a0] has odd symmetry.
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Exercise 13-4 The RL circuit shown in Fig. E13.4(a) is excited by the square-wave voltage waveform of
Fig. E13.4(b). Determine υout(t).

Solution: From the waveform, we deduce that

T = 2 s, ω0 =
2π

T
= π rad/s, A = 1 V.

Step 1

From entry #2 in Table 13-2,

υs(t) =
∞

∑
n=1

n=odd

4A
nπ

sin
(

2πnt
T

)

=
∞

∑
n=1

n=odd

4
nπ

sinnπt

=
∞

∑
n=1

n=odd

4
nπ

cos(nπt−90◦) V.

Thus,

An =
4

nπ
, φn =−90◦.
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Step 2

H(ω) =
Vout(ω)
Vs(ω)

=
jωL

R+ jωL
.

Step 3

With ω0 = π rad/s and φn =−90◦,

υout(t) = a0 H(ω = 0)+
∞

∑
n=1

An Re{H(ω = nω0) e j(nω0t+φn)}

=
∞

∑
n=1

n=odd

4
nπ

Re

{
jnω0L

R+ jnω0L
e j(nω0t+φn)

}

=
∞

∑
n=1

n=odd

4L√
R2 +n2π2L2

cos(nπt +θn) V,

with

θn =− tan−1
(

nπL
R

)
.
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Exercise 13-5 What will the expression given by Eq. (13.43) simplify to if the associated circuit segment is
(a) purely resistive or (b) purely reactive?

Solution: (a) Pav = VdcIdc + 1
2 ∑

∞
n=1VnIn, because φυn = φin , (b) Pav = 0, because for a capacitor, Idc = 0 and

φυn−φin = 90◦; and for an inductor, Vdc = 0 and φυn−φin =−90◦.
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Exercise 13-6 For a single rectangular pulse of width τ , what is the spacing ∆ω between first nulls? If τ is
very wide, will its frequency spectrum be narrow and peaked or wide and gentle?

Solution: ∆ω = 4π/τ . Wide τ leads to narrow spectrum.
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Exercise 13-7 Use the entries in Table 13-4 to determine the Fourier transform of u(−t).

Solution: From Table 13-4,

sgn(t)
2
jω

,

u(t) π δ (ω)+
1
jω

.

Also,
sgn(t) = u(t)−u(−t).

Hence,
u(−t) = u(t)− sgn(t),

and the corresponding Fourier transform is

u(−t) π δ (ω)+
1
jω
− 2

jω

= π δ (ω)− 1
jω

.
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Exercise 13-8 Verify the Fourier transform expression for entry #10 in Table 13-4.

Solution:
cosω0t f (t) =

(
e jω0t + e− jω0t

2

)
f (t).

Applying Property 5 in Table 13-5,

1
2

e jω0t f (t)
1
2

F(ω−ω0),

1
2

e− jω0t f (t)
1
2

F(ω +ω0).

Hence,

cosω0t f (t)
1
2

[F(ω−ω0)+F(ω +ω0)].
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Exercise 13-9 Verify the reversal property given by Eq. (13.85).

Solution: By the definition given by Eq. (13.65a),

F(ω) =
∫

∞

−∞

f (t) e− jωt dt.

Replacing ω with −ω gives

F(−ω) =
∫

∞

−∞

f (t) e jωt dt,

which is the same as the complex conjugate F∗(ω):

F∗(ω) =
∫

∞

−∞

f (t) e jωt dt.

Hence,
F(−ω) = F∗(ω).
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