Circuits

by

Fawwaz T. Ulaby, Michel M. Maharbiz, Cynthia M. Furse

Figures
Chapter 1: Circuit Terminology
Chapter 2: Resistive Circuits
Chapter 3: Analysis Techniques
Chapter 4: Operational Amplifiers
Chapter 5: RC and RL First-Order Circuits
Chapter 6: RLC Circuits
Chapter 7: ac Analysis
Chapter 8: ac Power
Chapter 9: Frequency Response of Circuits and Filters
Chapter 10: Three-Phase Circuits
Chapter 11: Magnetically Coupled Circuits
Chapter 12: Circuit Analysis by Laplace Transform
Chapter 13: Fourier Analysis Technique
Chapter 1
Circuit Terminology

Figures

Figure 1-1: Cell phone.

Figure 1-2: Cell-phone block diagram. Each block consists of multiple circuits that together provide the required functionality.

Figure 1-3: The functionality of a circuit is discerned by applying the tools of circuit analysis. The reverse process, namely the realization of a circuit whose functionality meets a set of specifications, is called circuit synthesis or design.

Figure 1-4: (a) Block diagram, (b) circuit diagram, (c) printed-circuit-board (PCB) layout, (d) photograph of a touch-sensor circuit.

Figure 1-5: Diagram representing a circuit that contains dc and ac sources, passive elements (six resistors, one capacitor, and one inductor), and one active element (operational amplifier). Ordinary nodes are in yellow, extraordinary nodes in other colors, and the ground node in black.

Figure 1-6: Two light bulbs connected (a) in series and (b) in parallel.

Figure 1-7: Circuits for Example 1-1.

Figure 1-8: The branches containing R_3 and R_4 in (a) appear to cross over one another, but redrawing the circuit as in (b) avoids the crossover, thereby demonstrating that the circuit is planar.

Figure 1-9: The current flowing in the wire is due to electron transport through a drift process, as illustrated by the magnified structure of the wire.

Figure 1-10: After closing the switch, it takes only 0.2 μs to observe a current in the resistor.

Figure 1-11: Direction of (positive) current flow through a conductor is opposite that of electrons.

Figure 1-12: A current of 5 A flowing “downward” is the same as -5 A flowing “upward” through the wire.

Figure 1-13: Graphical illustrations of various types of current variations with time.

Figure 1-14: The current $i(t)$ displayed in (a) generates the cumulative charge $q(t)$ displayed in (b).

Figure 1-15: Moving charge dq through the material in (b) is analogous to raising mass dm in (a).

Figure 1-16: In (a), with the (+) designation at node a, $V_{ab} = 12$ V. In (b), with the (+) designation at node b, $V_{ba} = -12$ V, which is equivalent to $V_{ab} = 12$ V. [That is, $V_{ab} = -V_{ba}$.]
Figure 1-17: Ground is any point in the circuit selected to serve as a reference point for all points in the circuit.

Figure 1-18: An ideal voltmeter measures the voltage difference between two points (such as nodes 1 and 2 in (a)) without interfering with the circuit (i.e., no current runs through the voltmeter). Similarly, an ideal ammeter measures the current magnitude and direction with no voltage drop across itself. In (b), one voltmeter is used to measure voltage difference V_{ab} and another to measure node voltage V_a. Note the polarity of the meters. The red leads are connected to the + terminals of the voltages or currents, and the black leads are connected to the − terminals of the voltages or currents. For the voltmeter, the red port on the left is (+) and the black port in the center is (−), and for the ammeter the red port on the right is the (+).

Figure 1-19: Open circuit between terminals 1 and 2, and short circuit between terminals 3 and 4.

Figure 1-20: (a) Single-pole single-throw (SPST) and (b) single-pole double-throw (SPDT) switches.

Figure 1-21: Current flow through a resistor (light-bulb filament) after closing the switch.

Figure 1-22: Passive sign convention.

Figure 1-23: Circuits for Example 1-5.

Figure 1-24: i–v relationships for (a) an ideal resistor, (b) ideal, independent current and voltage sources, and (c) a dependent, voltage-controlled voltage source (VCVS).

Figure 1-25: (a) A realistic voltage source has a nonzero series resistance R_s, which can be replaced with a short circuit if R_s is much smaller than the load resistance R_L. (b) A realistic current source has a nonzero parallel resistance R_s, which can be replaced with an open circuit if $R_s \gg R_L$.

Figure 1-26: Circuit and temperature profile of battery’s R_s of Example 1-7.

Figure 1-27: An operational amplifier is a complex device, but its circuit behavior can be represented in terms of a simple equivalent circuit that includes a dependent voltage source.

Figure 1-28: Circuit for Example 1-7.

Figure 1-29: Circuit for Example 1-9.

Figure 1-30: Solutions for circuit in Fig. 1.29.
Chapter 2
Resistive Circuits

Figures

Figure 2-1: Longitudinal resistor of conductivity σ, length ℓ, and cross-sectional area A.

Figure 2-2: Various types of resistors. Tubular-shaped resistors usually are color-coded by 4-, 5-, or 6-band systems.

Figure 2-3: (a) A rheostat is used to set the resistance between terminals 1 and 2 at any value between zero and R_{max}; (b) the wiper in a potentiometer divides the resistance R_{max} among R_{13} and R_{23}.

Figure 2-4: i–ν responses of ideal and real resistors.

Figure 2-5: In-series and in-parallel connections.

Figure 2-6: Circuit for Example 2-1.

Figure 2-7: Circuit for Example 2-2.

Figure 2-8: p-n junction diode (a) configuration, (b) reverse biased, (c) forward biased, (d) typical i–ν plots for LEDs, and (e) LED equivalent circuit.

Figure 2-9: Currents at a node.

Figure 2-10: Circuit for Example 2-3.

Figure 2-11: Circuit for Example 2-4.

Figure 2-12: One-loop circuit.

Figure 2-13: Circuit for Example 2-5 before and after labeling voltages across the three resistors with polarities consistent with Ohm’s law.

Figure 2-14: Circuit for Example 2-6.

Figure 2-15: Circuit for Example 2-7.

Figure 2-16: Circuit for Example 2-8.

Figure 2-17: Circuit equivalence requires that the equivalent circuit exhibit the same i–ν characteristic as the original circuit.

Figure 2-18: In a single-loop circuit, R_{eq} is equal to the sum of the resistors.

Figure 2-19: Voltage dividers are important tools in circuit analysis and design.
Figure 2-20: Unrealizable circuit; two current sources with different magnitudes or directions cannot be connected in series.

Figure 2-21: In-series voltage sources can be added together algebraically.

Figure 2-22: Voltage source connected to a parallel combination of three resistors.

Figure 2-23: Equivalent circuit for two resistors in parallel.

Figure 2-24: This is an unrealizable circuit unless all voltage sources have identical voltages and polarities; that is, $V_1 = V_2 = V_3$.

Figure 2-25: Adding current sources connected in parallel.

Figure 2-26: Circuit for Example 2-10.

Figure 2-27: Circuits of Example 2-11.

Figure 2-28: Example 2-12. (a) Original circuit, (b) after combining R_3 and R_4 in parallel and combining R_2 and R_5 in series, and (c) after combining the 3 Ω and 6 Ω resistances in parallel.

Figure 2-29: Realistic voltage and current sources connected to an external circuit. Equivalence requires that $i_s = v_s/R_1$ and $R_2 = R_1$.

Figure 2-30: Example 2-13 circuit evolution.

Figure 2-31: Circuit evolution for Example 2-14.

Figure 2-32: No two resistors of this circuit share the same current (connected in series) or voltage (connected in parallel).

Figure 2-33: Y–Δ equivalent circuits.

Figure 2-34: Redrawing the circuit of Fig. 2.32 to resemble (a) Y and (b) T and Π subcircuits.

Figure 2-35: Example 2-15 circuit evolution.

Figure 2-36: Wheatstone-bridge circuit containing an adjustable variable resistor R_3 and an unknown resistor R_x. When R_3 is adjusted to make $I_a = 0$, R_x is determined from $R_x = (R_2/R_1)R_3$.

Figure 2-37: Circuit for Wheatstone-bridge sensor.

Figure 2-38: I–V relationships for a resistor R, an ideal voltage source V_0, and an ideal current source I_0.

Figure 2-39: Use of a fuse to protect a voltage source.

Figure 2-40: pn-junction diode schematic symbol and i–v characteristics.

Figure 2-41: Diode circuit of Example 2-17.

Figure 2-42: Diode circuit and waveforms of Example 2-18.
Figure 2-43: The resistance of a piezoresistor changes when mechanical stress is applied.

Figure 2-44: A cantilever structure with integrated piezoresistor at the base.

Figure 2-45: Multisim screen for selecting and placing a resistor.

Figure 2-46: Adding a voltage source and completing the circuit.

Figure 2-47: Executing a simulation.

Figure 2-48: Solution window.

Figure 2-49: Creating a dependent source.

Figure 2-50: Circuit from Fig. 2.49 adapted to read out the currents through R1, R2, and the dependent source.
Chapter 3
Analysis Techniques

Figures

Figure 3-1: Circuit with dependent source $V_a = 5I_1$.

Figure 3-2: Circuit for Example 3-1.

Figure 3-3: Example 3-2.

Figure 3-4: Circuit containing two supernodes and one quasi-supernode.

Figure 3-5: A supernode composed of nodes V_2 and V_3 can be represented as a single node, in terms of
summing currents flowing out of them, plus an auxiliary equation that defines the voltage difference
between V_3 and V_2.

Figure 3-6: Circuit for Example 3-3.

Figure 3-7: Circuit containing two meshes with mesh currents I_1 and I_2.

Figure 3-8: Circuit for Example 3-4.

Figure 3-9: Mesh-current solution for a circuit containing a dependent source (Example 3-5).

Figure 3-10: Concept of a supermesh.

Figure 3-11: Using the supermesh concept to simplify solution of the circuit in Example 3-6.

Figure 3-12: Application of the nodal-analysis by-inspection method is facilitated by replacing resistors with
conductances.

Figure 3-13: Circuit for Example 3-7.

Figure 3-14: Three-mesh circuit of Example 3-8.

Figure 3-15: Application of the source-superposition method to the circuit of Example 3-9.

Figure 3-16: Application of superposition to the circuit of Example 3-10.

Figure 3-17: Cell-phone block diagram.

Figure 3-18: Input and output circuits as seen from the perspective of a radio-frequency amplifier circuit.

Figure 3-19: (a) Power distribution system driving a fan and a lamp in a house, and (b) block diagram of the
source (power distribution system), fan, lamp, and a voltmeter measuring the voltage in the outlet.

Figure 3-20: A circuit can be represented in terms of a Thévenin equivalent comprising a voltage source V_{Th}
in series with a resistance R_{Th}.
Figure 3-21: Equivalency means that v_{Th} of the Thévenin equivalent circuit is equal to the open-circuit voltage for the actual circuit.

Figure 3-22: Thévenin voltage is equal to the open-circuit voltage and Thévenin resistance is equal to the ratio of v_{oc} to i_{sc}, where i_{sc} is the short-circuit current between the output terminals.

Figure 3-23: Applying open circuit/short circuit method to find the Thévenin equivalent for the circuit of Example 3-10.

Figure 3-24: For a circuit that does not contain dependent sources, R_{Th} can be determined by deactivating all sources (replacing voltage sources with short circuits and current sources with open circuits) and then simplifying the circuit down to a single resistance R_{eq}.

Figure 3-25: After deactivation of sources, systematic simplification leads to R_{Th} (Example 3-12).

Figure 3-26: If a circuit contains both dependent and independent sources, R_{Th} can be determined by (a) deactivating only independent sources (by replacing independent voltage sources with short circuits and independent current sources with open circuits), (b) adding an external source v_{ex}, and then (c) solving the circuit to determine i_{ex}. The solution is $R_{Th} = v_{ex}/i_{ex}$.

Figure 3-27: Solution of the open-circuit voltage gives $V_{ab} = V_{Th} = 15$ V. Use of the external-voltage method leads to $R_{Th} = 56/11$ Ω (Example 3-13).

Figure 3-28: Equivalence between Thévenin and Norton equivalent circuits, consistent with the source transformation method of Section 2-3.4.

Figure 3-29: Repeated application of Thévenin-equivalent circuit technique.

Figure 3-30: To analyze the transfer of voltage, current, and power from the source circuit to the load circuit, we first replace them with their Thévenin equivalents.

Figure 3-31: Variation of power p_L dissipated in the load R_L, as a function of R_L.

Figure 3-32: Evolution of the circuit of Example 3-15.

Figure 3-33: Configurations and symbols for (a) pnp and (b) npn transistors.

Figure 3-34: dc equivalent model for the npn transistor. The equivalent dc source $V_{BE} \approx 0.7$ V.

Figure 3-35: Circuit for Example 3-16.

Figure 3-36: Circuit for Example 3-17.

Figure 3-37: Circuit analysis with Multisim.

Figure 3-38: (a) Circuit with a switch, and (b) its Multisim representation.

Figure 3-39: Multisim procedure for calculating power consumed (or generated) by the seven elements in the circuit of Fig. 3.37(a).
Chapter 4
Operational Amplifiers

Figures

Figure 4-1: The circuit diagram of the Model 741 op amp consists of 20 transistors, several resistors, and one capacitor.

Figure 4-2: Operational amplifier.

Figure 4-3: Op-amp transfer characteristics. The linear range extends between $v_o = -V_{cc}$ and $+V_{cc}$. The slope of the line is the op-amp gain A.

Figure 4-4: Circuit gain G is the ratio of the output voltage v_L to the signal input voltage v_h.

Figure 4-5: Op amp operated as a switch. The $\pm V_{cc}$ flags indicate the dc supply voltages connected to pins 7 and 4.

Figure 4-6: Equivalent circuit model for an op amp operating in the linear range ($v_o \leq |V_{cc}|$). Voltages v_p, v_n, and v_o are referenced to ground.

Figure 4-7: Noninverting amplifier circuit of Example 4-1.

Figure 4-8: Trade-off between gain and dynamic range.

Figure 4-9: Ideal op-amp model.

Figure 4-10: Noninverting amplifier circuit: (a) using ideal op-amp model and (b) equivalent block-diagram representation.

Figure 4-11: Inverting amplifier circuit and its block-diagram equivalent.

Figure 4-12: Inverting amplifier circuit of Example 4-2.

Figure 4-13: Inverting summing amplifier.

Figure 4-14: Two-stage circuit realization of $v_o = 4v_1 + 7v_2$.

Figure 4-15: Noninverting summer.

Figure 4-16: Difference-amplifier circuit.

Figure 4-17: The voltage follower provides no voltage gain ($v_o = v_h$), but it insulates the input circuit from the load.

Figure 4-18: Block-diagram representation (Example 4-4).

Figure 4-19: Design of a circuit for the pressure sensor of Example 4-5 with $P_0 =$ pressure at sea level and $P =$ pressure at height h.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse *Circuits* © 2015 National Technology Press
Figure 4-20: Example 4-6.

Figure 4-21: Circuit for Example 4-7.

Figure 4-22: Comparison of direct and differential measurement uncertainties.

Figure 4-23: Instrumentation-amplifier circuit.

Figure 4-24: A digital-to-analog converter transforms a digital signal into an analog voltage proportional to the decimal value of the digital sequence.

Figure 4-25: Circuit implementation of a DAC.

Figure 4-26: $R-2R$ ladder digital-to-analog converter.

Figure 4-27: MOSFET symbol and voltage designations.

Figure 4-28: MOSFET (a) circuit, (b) characteristic curves, (c) equivalent circuit, and (d) associated characteristic lines.

Figure 4-29: Complementary characteristic curves for NMOS and PMOS.

Figure 4-30: CMOS inverter.

Figure 4-31: MOSFET amplifier circuit for Example 4-9.

Figure 4-32: Buffer circuit for Example 4-10.

Figure 4-33: Three-dimensional neural probe (5 mm \times 5 mm \times 3 mm). (Courtesy of Prof. Ken Wise and Gayatri Perlin, University of Michigan.)

Figure 4-34: Neural-probe circuit for Example 4-11.

Figure 4-35: Wheatstone-bridge op-amp circuit.

Figure 4-36: Multisim window of the circuit of Fig. 4.35. The oscilloscope trace shows the 60 Hz waveform of the output voltage. Had the voltage source been a dc source, the oscilloscope trace would have been a horizontal line.

Figure 4-37: Multisim equivalent of the MOSFET circuit of Fig. 4.30.

Figure 4-38: Input and output voltages $V(1)$ and $V(2)$ in the circuit of Fig. 4.37 as a function of time.

Figure 4-39: Output response of the MOSFET inverter circuit of Fig. 4.37 as a function of the amplitude of the input voltage.
Chapter 5
RC and RL First-Order Circuits

Figures

Figure 5-1: Circuit response to (a) dc source $\nu(t) = V_0$ and (b) ac source $\nu(t) = V_0 \cos \omega t$.

Figure 5-2: Step functions: (a) ideal step function, (b) realistic step function with transition duration Δt, (c) time-shifted step function $V_0 u(t - 3)$, (d) time-shifted step function $V_0 u(3 - t)$.

Figure 5-3: Connecting/disconnecting a voltage source to/from a circuit via a switch can be represented mathematically by a step function.

Figure 5-4: Time-shifted ramp functions.

Figure 5-5: Step waveform of Example 5-1.

Figure 5-6: Connecting a switch to a dc source at $t = 1$ s and then returning it to ground at $t = 5$ s constitutes a voltage pulse centered at $T = 3$ s and of duration $\tau = 4$ s.

Figure 5-7: Rectangular pulses.

Figure 5-8: Rectangular and trapezoidal pulses of Example 5-2.

Figure 5-9: By $t = \tau$, the exponential function $e^{-t/\tau}$ has decayed to 37 percent of its original value at $t = 0$.

Figure 5-10: Properties of the exponential function.

Figure 5-11: Parallel-plate capacitor with plates of area A, separated by a distance d, and filled with an insulating dielectric material of permittivity ε.

Figure 5-12: Various types of capacitors.

Figure 5-13: Passive sign convention for capacitor: if current i is entering the (+) voltage terminal across the capacitor, then power is getting transferred into the capacitor. Conversely, if i is leaving the (+) terminal, then power is getting released from the capacitor.

Figure 5-14: Example 5-3 waveforms for i, ν, p, and w.

Figure 5-15: Under dc conditions, capacitors behave like open circuits.

Figure 5-16: Capacitors in series.

Figure 5-17: Capacitors in parallel.

Figure 5-18: Circuit for Example 5-5.

Figure 5-19: Voltage-division rules for (a) in-series resistors and (b) in-series capacitors.
Figure 5-20: The inductance of a solenoid of length \(\ell \) and cross-sectional area \(S \) is \(L = \mu N^2 S / \ell \), where \(N \) is the number of turns and \(\mu \) is the magnetic permeability of the core material.

Figure 5-21: Various types of inductors.

Figure 5-22: Passive sign convention for an inductor.

Figure 5-23: Circuit for Example 5-7.

Figure 5-24: Inductors in series.

Figure 5-25: Inductors in parallel.

Figure 5-26: Under steady-state dc conditions, capacitors act like open circuits, and inductors act like short circuits.

Figure 5-27: Generic first-order RC circuit.

Figure 5-28: RC circuit with an initially charged capacitor that starts to discharge its energy after \(t = 0 \).

Figure 5-29: Response of the RC circuit in Fig. 5.28(a) to moving the SPDT switch to terminal 2.

Figure 5-30: RC circuit switched from source \(V_{s_1} \) to source \(V_{s_2} \) at \(t = 0 \).

Figure 5-31: Replacing a resistive circuit with its Thévenin equivalent as seen by capacitor \(C \).

Figure 5-32: Circuit for Example 5-9.

Figure 5-33: Circuit for Example 5-10 [part (a)].

Figure 5-34: After having been in position 1 for a long time, the switch is moved to position 2 at \(t = 0 \) and then returned to position 1 at \(t = 10 \) s (Example 5-11).

Figure 5-35: RC-circuit response to a 4 s long rectangular pulse.

Figure 5-36: RL circuit disconnected from a current source at \(t = 0 \).

Figure 5-37: RL circuit switched between two current sources at \(t = 0 \).

Figure 5-38: Circuit for Example 5-13.

Figure 5-39: Circuit and associated plot for Example 5-14.

Figure 5-40: Integrator circuit.

Figure 5-41: Example 5-15 (a) input signal, (b) output signal with no op-amp saturation, and (c) output signal with op-amp saturation at \(-9 \) V.

Figure 5-42: Differentiator circuit.

Figure 5-43: Op-amp circuit of Example 5-16.
Figure 5-44: Circuit for Example 5-17.

Figure 5-45: Op-amp circuit whose output $v(t)$ is a solution to $v'' + 8v' + 2v = 12\sin(200t) u(t)$.

Figure 5-46: Pulse sequence.

Figure 5-47: Capacitance of a two-wire configuration where ε is the permittivity of the material separating the wires.

Figure 5-48: n-channel MOSFET (NMOS): (a) circuit symbol with added parasitic capacitances and (b) equivalent circuit. [In a PMOS, parasitic capacitances C_D^p and C_S^p should be shown connected to V_{DD} instead of to ground.]

Figure 5-49: Common drain inverter circuit with parasitic capacitances. Superscripts “n” and “p” refer to the NMOS and PMOS transistors, respectively.

Figure 5-50: (a) Equivalent circuit for the CMOS inverter; (b) the response of $v_{out}(t)$ to v_{in} changing states from 0 to V_{DD} at $t = 0$.

Figure 5-51: RC circuit with an SPST switch.

Figure 5-52: Multisim equivalent of the RC circuit in Fig. 5.51.

Figure 5-53: Transient response of the circuit in Fig. 5.52.

Figure 5-54: Multisim analysis of a circuit containing time-dependent sources.
Chapter 6
RLC Circuits

Figures

Figure 6-1: Examples of second-order circuits.

Figure 6-2: Circuit of Example 6-1.

Figure 6-3: Circuit for Example 6-2.

Figure 6-4: Illustrating the charge-up and discharge responses of a series RLC circuit with $V_s = 24 \text{ V}$. In all cases $R = 12 \text{ } \Omega$ and $L = 0.3 \text{ } \text{H}$, which specifies $\alpha = R/2L = 20 \text{ Np/s}$. When $C = 0.01 \text{ F}$, the response is overdamped, when $C = 8.33 \text{ mF}$, the response is critically damped, and when $C = 0.72 \text{ mF}$, the response is underdamped.

Figure 6-5: Connecting a series RLC circuit with a charged-up capacitor to a source with higher voltage.

Figure 6-6: Connecting a series RLC circuit with a charged-up capacitor to a source with lower voltage.

Figure 6-7: Series RLC circuit connected to a source V_s at $t = 0$. In general, the capacitor may have had an initial charge on it at $t = 0^-$, with a corresponding initial voltage $v_C(0^-)$.

Figure 6-8: Example 6-3: (a) circuit, (b) $v_C(t)$, and (c) $i_C(t)$.

Figure 6-9: Circuit for Example 6-4.

Figure 6-10: Circuit response for Example 6-5.

Figure 6-11: Example 6-6 (a) circuit and (b) $v_C(t)$.

Figure 6-12: Example 6-7 with $V_s = 12 \text{ V}$, $R = 40 \text{ } \Omega$, $L = 0.8 \text{ } \text{H}$, and $C = 2 \text{ mF}$.

Figure 6-13: Circuit for Example 6-8.

Figure 6-14: The differential equation for $v_C(t)$ of the series RLC circuit shown in (a) is identical in form to that of the current $i_L(t)$ in the parallel RLC circuit in (b).

Figure 6-15: Circuit for Example 6-9.

Figure 6-16: Circuit for Example 6-10.

Figure 6-17: Circuit for Example 6-11.

Figure 6-18: Op-amp circuit of Example 6-12.

Figure 6-19: Multisim screen with RLC circuit.
Figure 6-20: Voltage responses to moving the switch in the RLC circuit from position 2 to position 1.

Figure 6-21: Illustration of an RFID transceiver in close proximity to an RFID tag. Note that the RFID tag will only couple to the transceiver when the two inductors are aligned along the magnetic field (shown in blue).

Figure 6-22: Basic elements of the RFID.

Figure 6-23: Multisim rendition of RFID circuit.

Figure 6-24: Oscilloscope trace for RFID receive channel $u_{\text{out}}(t)$ after moving the switch from T to R.
Chapter 7
ac Analysis

Figures

Figure 7-1: The function $\nu(t) = V_m \cos \omega t$ plotted as a function of (a) ωt and (b) t.

Figure 7-2: Plots of $\nu(t) = V_m \cos[(2\pi t/T) + \phi]$ for three different values of ϕ.

Figure 7-3: Relation between rectangular and polar representations of a complex number $z = x + jy = |z|e^{j\theta}$.

Figure 7-4: Complex numbers z_1 to z_4 have the same magnitude $|z| = \sqrt{2^2 + 3^2} = 3.61$, but their polar angles depend on the polarities of their real and imaginary components.

Figure 7-5: Complex numbers V and I in the complex plane (Example 7-3).

Figure 7-6: RC circuit connected to an ac source.

Figure 7-7: Five-step procedure for analyzing ac circuits using the phasor-domain technique.

Figure 7-8: RL circuit of Example 7-5.

Figure 7-9: Three different, two-element, series combinations.

Figure 7-10: Voltage division among two impedances in series.

Figure 7-11: Current division among two admittances in parallel.

Figure 7-12: Circuit for Example 7-6.

Figure 7-13: Circuit for Example 7-7.

Figure 7-14: Y–Δ equivalent circuits.

Figure 7-15: Example 7-8 circuit evolution.

Figure 7-16: Source-transformation equivalency.

Figure 7-17: Thévenin-equivalent method for a circuit with no dependent sources.

Figure 7-18: The (a) open-circuit/short-circuit method and (b) the external-source method are both suitable for determining Z_{Th}, whether or not the circuit contains dependent sources.

Figure 7-19: Using source transformation to simplify the circuit of Example 7-9. (All impedances are in ohms.)

Figure 7-20: Phasor diagrams for R, L, and C.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 7-21: Circuit and phasor diagrams for Example 7-10. The true phase angle of I is 66.87°, so if the relative phasor diagram in (c) were to be rotated counterclockwise by that angle and the scale adjusted to incorporate the fact $I_0 = 2$, the diagram would coincide with the absolute phasor diagram in (d).

Figure 7-22: The phase-shift circuit changes the phase of the input signal by ϕ.

Figure 7-23: RC phase-shift circuit: the phase of u_{out1} (across R) leads the phase of $u_{\text{in}}(t)$, whereas the phase of u_{out2} (across C) lags the phase of $u_{\text{in}}(t)$.

Figure 7-24: Three-stage, cascaded, RC phase-shifter (Example 7-11).

Figure 7-25: Circuit for Example 7-12 in (a) the time domain and (b) the phasor domain.

Figure 7-26: Equivalent of the circuit in Fig. 7.25, after source transformation of voltage sources into current sources and replacement of passive elements with their equivalent admittances.

Figure 7-27: Phasor-domain circuit containing a supernode and a dependent source (Example 7-13).

Figure 7-28: Circuit for Example 7-14.

Figure 7-29: Demonstration of the source-superposition technique (Example 7-15).

Figure 7-30: After determining the open-circuit voltage in part (b) and the short-circuit current in part (c), the Thévenin equivalent circuit is connected to the inductor to determine I_L.

Figure 7-31: Op-amp (a) equivalent circuit (for both dc and ac) and (b) ideal model (for dc, and ac at low frequencies).

Figure 7-32: Open-loop gain A versus frequency for the LM741 op amp.

Figure 7-33: Inverting amplifier.

Figure 7-34: Inverting amplifier as a phase-shift circuit.

Figure 7-35: Block diagram of a basic dc power supply.

Figure 7-36: Schematic symbol for an ideal transformer. Note the reversal of the voltage polarity and current direction when the dot location at the secondary is moved from the top end of the coil to the bottom end. For both configurations:

$$\frac{v_2}{v_1} = \frac{N_2}{N_1} = n, \quad \frac{i_2}{i_1} = \frac{N_1}{N_2} = \frac{1}{n}, \quad \frac{p_2}{p_1} = \frac{u_2i_2}{u_1i_1} = 1.$$

Figure 7-37: Half-wave rectifier circuit.

Figure 7-38: Full-wave bridge rectifier. Current flows in the same direction through the load resistor for both half cycles.

Figure 7-39: Smoothing filter reduces the variations of waveform $u_{\text{out}}(t)$.

Figure 7-40: Complete power-supply circuit.
Figure 7-41: Distributed impedance model of two-wire transmission line.

Figure 7-42: Transmission-line circuit in Multisim.

Figure 7-43: Multisim display of voltage waveforms at nodes 1, 2, 3, 4, 5, and 6.

Figure 7-44: Using the Logic Analyzer to measure time delay in Multisim.

Figure 7-45: Logic Analyzer readout at nodes 1, 2, 3, 4, 5, and 6.

Figure 7-46: Multisim Grapher Plot of voltage nodes V(1), V(2), and V(6) in the circuit of Fig. 7.42.

Figure 7-47: Using Measurement Probes to determine phase and amplitude of signal at various points on transmission line.
Chapter 8
ac Power

Figures

Figure 8-1: Examples of three periodic waveforms.

Figure 8-2: Passive load circuit connected to an input source at terminals \((a,b)\).

Figure 8-3: Waveforms for a 60 Hz circuit with \(v(t) = 4\cos(377t + 30^\circ)\) V, \(i(t) = 3\cos(377t - 30^\circ)\) A, and \(p(t) = v(t)\ i(t)\). The waveform of \(i(t)\) is shifted by 60\(^\circ\) behind that of \(v(t)\), and the oscillation frequency of \(p(t)\) is twice that of \(v(t)\) or \(i(t)\).

Figure 8-4: Source circuit connected to an impedance \(Z\) of a load circuit.

Figure 8-5: Complex power \(S\) lies in quadrant 1 for an inductive load and in quadrant 4 for a capacitive load.

Figure 8-6: Example 8-3.

Figure 8-7: Circuit for Example 8-4.

Figure 8-8: Inductive and capacitive loads connected to an electrical source.

Figure 8-9: Adding a shunt capacitor across an inductive load reduces the current supplied by the generator.

Figure 8-10: Comparison of source currents and *power factor triangles* for the compensated and uncompensated circuits.

Figure 8-11: Power triangles for Example 8-6.

Figure 8-12: Replacing the source and load circuits with their respective Thévenin equivalents.

Figure 8-13: Circuit for Example 8-7.

Figure 8-14: Matching network in between the source and the load.

Figure 8-15: Multisim simulation of matching network \((CM, RM)\) in between the source and the load, and wattmeter displays for maximum power transfer.

Figure 8-16: Multisim circuit without instruments.

Figure 8-17: Spectral plots of the magnitude and phase of the complex power \(S\) at terminals \((3,0)\) in Fig. 8.16.
Chapter 9
Frequency Response of Circuits and Filters

Figures

Figure 9-1: The voltage-gain transfer function is
\[H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} \].

Figure 9-2: Typical magnitude spectral responses for the four types of filters.

Figure 9-3: Resonant peak in the spectral response of a lowpass filter circuit.

Figure 9-4: Resonance occurs when the imaginary part of the input impedance is zero. For the RL circuit, \(\Im[Z_{in1}] = 0 \) when \(\omega = 0 \) (dc), but for the RLC circuit, \(\Im[Z_{in2}] = 0 \) requires that \(Z_L = -Z_C \) or, equivalently, \(\omega^2 = 1/LC \).

Figure 9-5: Lowpass and highpass transfer functions.

Figure 9-6: Circuit of Example 9-1.

Figure 9-7: Prototype and scaled circuits of Example 9-2.

Figure 9-8: Magnitude and phase plots of \(H = \frac{V_{out}}{V_s} \).

Figure 9-9: Comparison of exact plots with the Bode straight-line approximations for a simple zero with a corner frequency \(\omega_c \).

Figure 9-10: Comparison of exact plots with Bode straight-line approximations for a quadratic zero \([1 + j2\xi \omega_c / \omega_c + (j\omega / \omega_c)^2] \).

Figure 9-11: Bode amplitude and phase plots for the transfer function of Example 9-4.

Figure 9-12: Bode magnitude and phase plots for Example 9-5.

Figure 9-13: Bode plot of bandreject filter of Example 9-6.

Figure 9-14: Series RLC circuit.

Figure 9-15: Series RLC bandpass filter.

Figure 9-16: Examples of bandpass-filter responses.

Figure 9-17: 10 dB bandwidth extends from \(\omega_a \) to \(\omega_b \), corresponding to \(M_{BP} \text{ (dB)} = -10 \text{ dB} \).

Figure 9-18: Two-stage RLC circuit of Example 9-8.

Figure 9-19: Plots of \(M_{HP} \text{ [dB]} \) for \(Q = 2 \) (weak resonance) and \(Q = 10 \) (moderate resonance).
Figure 9-20: RLC lowpass filter.

Figure 9-21: Bandreject filter.

Figure 9-22: Comparison of magnitude responses of the first-order RC filter and the second-order RLC filter. The corner frequencies are given by $\omega_c = 1/RC$ and $\omega_c = 1.28/RC$.

Figure 9-23: Inverting amplifier functioning like a lowpass filter.

Figure 9-24: Single-pole active highpass filter.

Figure 9-25: (a) In-series cascade of a lowpass and a highpass filter generates a bandpass filter; (b) in-parallel cascading generates a bandreject filter.

Figure 9-26: Three-stage lowpass filter and corresponding transfer functions.

Figure 9-27: Active bandpass filter of Example 9-11.

Figure 9-28: Bandreject filter of Example 9-12.

Figure 9-29: Overview of AM and FM.

Figure 9-30: Block diagram of superheterodyne receiver.

Figure 9-31: A series RLC filter implemented in Multisim.

Figure 9-32: Magnitude and phase plots for the circuit of Fig. 9.31 generated by AC Analysis for Example 9-13.

Figure 9-33: AC analysis plots for the circuit in Fig. 9.31 generated with the Parameter Sweep tool in Example 9-14. The capacitance was varied from 1 to 10 pF.

Figure 9-34: Three-stage op-amp circuit of Fig. 9.26(a) reproduced in Multisim for Example 9-15.

Figure 9-35: Output of Bode Plotter Instrument for Example 9-16.
Chapter 10
Three-Phase Circuits

Figures

Figure 10-1: Typical electrical power grid.

Figure 10-2: A 4800 V rms single-phase ac source connected to a residential user through a 20 : 1 step-down transformer.

Figure 10-3: Three-phase ac generator and associated voltage waveforms.

Figure 10-4: Y- and Δ-source configurations, with \(V_{Ys} \) = rms value of the phase-voltage magnitude of the Y-source. The rms magnitude of the Δ-source phase voltages is \(\sqrt{3} V_{Ys} \).

Figure 10-5: The three-phase source and load circuits can be connected in four possible arrangements: Y-Y, Y-Δ, Δ-Y, and Δ-Δ. In each arrangement, the source and load circuits are connected via transmission lines carrying line currents \(I_{L1}, I_{L2}, \) and \(I_{L3} \). [Parts (c) and (d) follow on the next page.]

Figure 10-5(continued): (Fig. 10-5 continued)

Figure 10-6: Three-phase Y source connected to a Y load circuit via transmission lines.

Figure 10-7: Y-Δ transformation for balanced load circuits.

Figure 10-8: The balanced Y-Y network is equivalent to the sum of three, independent single-phase circuits.

Figure 10-9: Circuit of Example 10-3 (voltage values are rms).

Figure 10-10: Δ-Δ network of Example 10-3.

Figure 10-11: Balanced Y-load circuit with line voltages \(V_{ab} \) to \(V_{ca} \), line currents \(I_{L1} \) to \(I_{L3} \), phase voltages \(V_{aN} \) to \(V_{cN} \), and phase currents \(I_{a} \) to \(I_{c} \).

Figure 10-12: Balanced Δ-load circuit connected to a balanced Y-source.

Figure 10-13: Circuit of Example 10-4 with calculated values of the currents.

Figure 10-14: A balanced three-phase load can be compensated by treating it as three individual circuits each consuming one-third of the total power.

Figure 10-15: Three-phase source connected in parallel to three loads, each a balanced three-phase load (Example 10-7).

Figure 10-16: A wattmeter uses two coils. The double polarity mark (±) of the current coil denotes the terminal that should be toward the source, and on the voltage coil, ± marks the terminal that should be connected to the line containing the current coil.

Figure 10-17: Two-wattmeter method applied to an unbalanced Δ-load.
Chapter 11
Magnetically Coupled Circuits

Figures

Figure 11-1: Magnetically coupled coils.

Figure 11-2: Dot convention for the mutual-inductance voltage induced in coil 2 by current i_1 in coil 1, and vice versa.

Figure 11-3: Polarities of voltage components for clockwise (CW) and counterclockwise (CCW) current directions.

Figure 11-4: Circuit of Example 11-1.

Figure 11-5: Circuit of Example 11-2.

Figure 11-6: Finding L_{eq} of two series-coupled inductors (Example 11-3).

Figure 11-7: Magnetically coupled coils.

Figure 11-8: (a) Transformer circuit with coil resistors R_1 and R_2, and (b) in terms of an equivalent input impedance Z_{in}.

Figure 11-9: Circuit of Example 11-4.

Figure 11-10: The transformer can be modeled in terms of T- or Π-equivalent circuits.

Figure 11-11: (a) Original circuit and (b) after replacing transformer with T-equivalent circuit.

Figure 11-12: Transformer and its T-equivalent circuit. Reversing the direction of either current or if dots are on opposite ends, M should be replaced with $-M$.

Figure 11-13: Circuits of Example 11-6.

Figure 11-14: Schematic symbol for an ideal transformer. Note the reversal of the voltage polarity and current direction when the dot location at the secondary is moved from the top end of the coil to the bottom end. For both configurations: $V_2/V_1 = N_2/N_1 = n$, $I_2/I_1 = N_1/N_2 = 1/n$.

Figure 11-15: Thévenin equivalent circuit of Example 11-7.

Figure 11-16: Autotransformer circuits.

Figure 11-17: Three possible connection configurations for three-phase transformers.

Figure 11-18: Circuit of Example 11-10.
Chapter 12
Circuit Analysis by Laplace Transform

Figures

Figure 12-1: Unit impulse function.

Figure 12-2: The top horizontal sequence involves solving a differential equation entirely in the time domain. The bottom horizontal sequence involves a much easier solution of a linear equation in the s-domain.

Figure 12-3: Singularity functions for Example 12-1.

Figure 12-4: The dc source, in combination with the switch, constitutes an input excitation \(v_h(t) = V_0 u(t) \).

Figure 12-5: Circuit for Example 12-6.

Figure 12-6: Example 12-7.

Figure 12-7: Example 12-8.

Figure 12-8: Circuit for Example 12-9.

Figure 12-9: Circuit for Example 12-10.

Figure 12-10: (a) RC circuit excited by a 1 V, 1 s rectangular pulse at 0.5 s, and (b) the corresponding response at node 2.

Figure 12-11: Multisim rendition of the circuit response to a sudden (but temporary) change in supply voltage level.

Figure 12-12: Multisim rendition of the circuit response to an arbitrary input signal produced by the PWL (Piecewise Linear) source.
Chapter 13
Fourier Analysis Technique

Figures

Figure 13-1: RL circuit excited by a square wave and corresponding output response.

Figure 13-2: Comparison of the square-wave waveform with its Fourier series representation using only the first term (b), the sum of the first three (c), ten (d), and 100 terms (e).

Figure 13-3: Sawtooth waveform: (a) original waveform, (b)–(e) representation by a truncated Fourier series with \(n_{\text{max}} = 1, 2, 10, \) and 100, respectively.

Figure 13-4: Periodic waveform of Example 13-2 with its associated line spectra.

Figure 13-5: Waveforms with (a) dc symmetry, (b and c) even symmetry, and (d and e) odd symmetry.

Figure 13-6: Plots for Example 13-3.

Figure 13-7: Waveforms for Example 13-4.

Figure 13-8: Circuit response to periodic pulses (Example 13-5).

Figure 13-9: Circuit and plots for Example 13-6.

Figure 13-10: Voltage across and current into a circuit segment.

Figure 13-11: The single pulse in (c) is equivalent to a periodic pulse train with \(T = \infty \).

Figure 13-12: Line spectra for pulse trains with \(T/\tau = 5, 10, \) and 20.

Figure 13-13: (a) Rectangular pulse of amplitude \(A \) and width \(\tau \); (b) frequency spectrum of |\(F(\omega) \)| for \(A = 5 \) and \(\tau = 1 \) s.

Figure 13-14: (a) The Fourier transform of \(\delta(t) \) is 1 and (b) the Fourier transform of 1 is \(2\pi \delta(\omega) \).

Figure 13-15: Time-frequency duality: a rectangular pulse generates a sinc spectrum and, conversely, a sinc-pulse generates a rectangular spectrum.

Figure 13-16: The Fourier transform of \(\cos \omega_0 t \) is equal to two impulse functions—one at \(\omega_0 \) and another at \(-\omega_0 \).

Figure 13-17: The model shown in (b) approaches the exact definition of sgn\((t) \) as \(\varepsilon \to 0 \).

Figure 13-18: Circuits for Example 13-11.

Figure 13-19: This mixed-signal chip implements a highly reconfigurable RF receiver based on a down-converting Sigma-Delta A/D (courtesy Renaldi Winoto and Prof. Borivoje Nikolic, U.C. Berkeley).
Figure 13-20: (a) A traditional 4-bit ADC converts an analog input voltage and produces 4 digital output bits; (b) a $\Sigma\Delta$ ADC generates a pulse train where the pulse duration is governed by the magnitude of the input voltage.

Figure 13-21: Block diagram of a $\Sigma\Delta$ modulator.

Figure 13-22: Complete Multisim circuit of the $\Sigma\Delta$ modulator.

Figure 13-23: A 1 Hz sinusoidal ac signal, $v_{in}(t)$, blue trace, is converted to a series of pulses at the output, $v_{out}(t)$, red trace, by the Sigma Delta modulator. Note that the duration of the pulses is related to the instantaneous level of voltage $v_{in}(t)$.
Figure 1.1 Cell phone.
Figure 1.2 Basic cell-phone block diagram. Each block consists of multiple circuits that together provide the required functionality.
The functionality of a circuit is discerned by applying the tools of circuit analysis. The reverse process, namely the realization of a circuit whose functionality meets a set of specifications, is called circuit synthesis or design.

Figure 1.3 The functionality of a circuit is discerned by applying the tools of circuit analysis. The reverse process, namely the realization of a circuit whose functionality meets a set of specifications, is called circuit synthesis or design.
Figure 1.4 (a) Block diagram, (b) circuit diagram, (c) printed-circuit-board (PCB) layout, (d) photograph of a touch-sensor circuit.
Figure 1.5 Diagram representing a circuit that contains dc and ac sources, passive elements (six resistors, one capacitor, and one inductor), and one active element (operational amplifier). Ordinary nodes are in yellow, extraordinary nodes in other colors, and the ground node in black.
Figure 1.6 Two light bulbs connected (a) in series and (b) in parallel.
Figure 1.7 Circuits for Example 1-1.
The branches containing R_3 and R_4 in (a) appear to cross over one another, but redrawing the circuit as in (b) avoids the crossover, thereby demonstrating that the circuit is planar.

Figure 1.8 The branches containing R_3 and R_4 in (a) appear to cross over one another, but redrawing the circuit as in (b) avoids the crossover, thereby demonstrating that the circuit is planar.
The current flowing in the wire is due to electron transport through a drift process, as illustrated by the magnified structure of the wire.

Figure 1.9 The current flowing in the wire is due to electron transport through a drift process, as illustrated by the magnified structure of the wire.
Figure 1.10 After closing the switch, it takes only 0.2 µs to observe a current in the resistor.
Figure 1.11 Direction of (positive) current flow through a conductor is opposite that of electrons.
Figure 1.12 A current of 5 A flowing “downward” is the same as −5 A flowing “upward” through the wire.
Figure 1.13 Graphical illustrations of various types of current variations with time.
Figure 1.14 The current \(i(t) \) displayed in (a) generates the cumulative charge \(q(t) \) displayed in (b).
(a) Raising water from ground level at b to height a

(b) Moving charge from a to b

Figure 1.15 Moving charge dq through the material in (b) is analogous to raising mass dm in (a).
Figure 1.16 In (a), with the (+) designation at node a, $V_{ab} = 12 \, \text{V}$. In (b), with the (+) designation at node b, $V_{ba} = -12 \, \text{V}$, which is equivalent to $V_{ab} = 12 \, \text{V}$. [That is, $V_{ab} = -V_{ba}$.]
Figure 1.17 Ground is any point in the circuit selected to serve as a reference point for all points in the circuit.
Figure 1.18 An ideal voltmeter measures the voltage difference between two points (such as nodes 1 and 2 in (a)) without interfering with the circuit (i.e., no current runs through the voltmeter). Similarly, an ideal ammeter measures the current magnitude and direction with no voltage drop across itself. In (b), one voltmeter is used to measure voltage difference V_{ab} and another to measure node voltage V_a (relative to ground). The red leads are connected to the + terminals of the voltages or currents, and the black leads are connected to the − terminals of the voltages or currents. For the voltmeter, the red port on the left is (+) and the black port in the center is (−), and for the ammeter the red port on the right is (+).
Figure 1.19 Open circuit between terminals 1 and 2, and short circuit between terminals 3 and 4.
Figure 1.20 (a) Single-pole single-throw (SPST) and (b) single-pole double-throw (SPDT) switches.
Figure 1.21 Current flow through a resistor (light-bulb filament) after closing the switch.
Figure 1.22 Passive sign convention.

- i: current entering the device
- v: voltage across the device
- $p = vi$: power delivered to the device

- $p > 0$: power delivered to the device
- $p < 0$: power supplied by the device

Note that i direction is defined as entering (+) side of v.

Passive Sign Convention
Figure 1.23 Circuits for Example 1-5.
Figure 1.24 i–v relationships for (a) an ideal resistor, (b) ideal, independent current and voltage sources, and (c) a dependent, voltage-controlled voltage source (VCVS).
Figure 1.25 (a) A realistic voltage source has a nonzero series resistance R_s, which can be replaced with a short circuit if R_s is much smaller than the load resistance R_L. (b) A realistic current source has a nonzero parallel resistance R_s, which can be replaced with an open circuit if $R_s \gg R_L$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 1.26 Circuit and temperature profile of battery’s R_s of Example 1-7.
Figure 1.27 An operational amplifier is a complex device, but its circuit behavior can be represented in terms of a simple equivalent circuit that includes a dependent voltage source.
Figure 1.28 Circuit for Example 1-7.
Figure 1.29 Circuit for Example 1-9.
Figure 1.30 Solutions for circuit in Fig. 1.29.
Figure 2.1 Longitudinal resistor of conductivity σ, length ℓ, and cross-sectional area A.

$$R = \frac{\ell}{\sigma A}$$
Figure 2.2 Various types of resistors. Tubular-shaped resistors usually are color-coded by 4-, 5-, or 6-band systems.
Figure 2.3 (a) A rheostat is used to set the resistance between terminals 1 and 2 at any value between zero and R_{max}; (b) the wiper in a potentiometer divides the resistance R_{max} among R_{13} and R_{23}.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure2_3}
\caption{(a) Rheostat (b) Potentiometer}
\end{figure}
Figure 2.4 i–v responses of ideal and real resistors.
Figure 2.5 In-series and in-parallel connections.
Figure 2.6 Circuit for Example 2-1.
Figure 2.7 Circuit for Example 2-2.
Figure 2.8 p-n junction diode (a) configuration, (b) reverse biased, (c) forward biased, (d) typical $i-v$ plots for LEDs, and (e) LED equivalent circuit.
Figure 2.9 Currents at a node.
Figure 2.10 Circuit for Example 2-3.
Figure 2.11 Circuit for Example 2-4.
Figure 2.12 One-loop circuit.
Figure 2.13 Circuit for Example 2-5 before and after labeling voltages across the three resistors with polarities consistent with Ohm’s law.
Figure 2.14 Circuit for Example 2-6.
Figure 2.15 Circuit for Example 2-7.
Figure 2.16 Circuit for Example 2.8.
Figure 2.17 Circuit equivalence requires that the equivalent circuit exhibit the same \(i-v \) characteristic as the original circuit.
Figure 2.18 In a single-loop circuit, R_{eq} is equal to the sum of the resistors.
Figure 2.19 Voltage dividers are important tools in circuit analysis and design.

\[v_2 = \frac{R_2}{R_1 + R_2} v_s \]

(b) Voltage divider is equivalent to subdividing a battery into two separate batteries
Figure 2.20 Unrealizable circuit; two current sources with different magnitudes or directions cannot be connected in series.
In-series voltage sources can be added together algebraically.

\[\begin{align*}
\upsilon_{\text{eq}} &= \upsilon_1 - \upsilon_2 + \upsilon_3 \\
R_{\text{eq}} &= R_1 + R_2
\end{align*} \]

Figure 2.21 In-series voltage sources can be added together algebraically.
\[R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right)^{-1} \]

\[i_2 = \left(\frac{R_{eq}}{R_2} \right) i_s \]

Figure 2.22 Voltage source connected to a parallel combination of three resistors.
\[i_1 = \left(\frac{R_2}{R_1 + R_2} \right) i_s \]
\[i_2 = \left(\frac{R_1}{R_1 + R_2} \right) i_s \]

Figure 2.23 Equivalent circuit for two resistors in parallel.
This is an unrealizable circuit unless all voltage sources have identical voltages and polarities; that is, $V_1 = V_2 = V_3$.

Figure 2.24 This is an unrealizable circuit unless all voltage sources have identical voltages and polarities; that is, $V_1 = V_2 = V_3$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse *Circuits* © 2015 National Technology Press
\[R_{eq} = R_2 \parallel R_3 = \frac{R_2 R_3}{R_2 + R_3} \]

\[I_{eq} = I_1 - I_2 + I_3 \]

Figure 2.25 Adding current sources connected in parallel.
Figure 2.26 Circuit for Example 2-10.
Figure 2.27 Circuits of Example 2-11.
Figure 2.28 Example 2-12. (a) Original circuit, (b) after combining R_3 and R_4 in parallel and combining R_2 and R_5 in series, and (c) after combining the $3 \, \Omega$ and $6 \, \Omega$ resistances in parallel.
Figure 2.29 Realistic voltage and current sources connected to an external circuit. Equivalence requires that $i_s = v_s/R_1$ and $R_2 = R_1$.
Figure 2.30 Example 2-13 circuit evolution.
Figure 2.31 Circuit evolution for Example 2-14.
Figure 2.32 No two resistors of this circuit share the same current (connected in series) or voltage (connected in parallel).
Figure 2.33 Y–Δ equivalent circuits.
Figure 2.34 Redrawing the circuit of Fig. 2.32 to resemble (a) Y and (b) T and Π subcircuits.
Figure 2.35 Example 2-15 circuit evolution.
Figure 2.36 Wheatstone-bridge circuit containing an adjustable variable resistor R_3 and an unknown resistor R_x. When R_3 is adjusted to make $I_a = 0$, R_x is determined from $R_x = (R_2/R_1)R_3$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 2.37 Circuit for Wheatstone-bridge sensor.

\[V_{out} \approx \frac{V_0}{4} \left(\frac{\Delta R}{R} \right) \]
Figure 2.38 I–V relationships for a resistor R, an ideal voltage source V_0, and an ideal current source I_0.
Figure 2.39 Use of a fuse to protect a voltage source.

(a) Accidental short circuit represented by a switch

(b) Fuse to protect voltage source

(c) i-v characteristic for a fuse prior to opening
Figure 2.40 pn-junction diode schematic symbol and i–v characteristics.
Figure 2.41 Diode circuit of Example 2-17.
Figure 2.42 Diode circuit and waveforms of Example 2-18.
Figure 2.43 The resistance of a piezoresistor changes when mechanical stress is applied.
Figure 2.44 A cantilever structure with integrated piezoresistor at the base.
Figure 2.45 Multisim screen for selecting and placing a resistor.
Figure 2.46 Adding a voltage source and completing the circuit.
Figure 2.47 Executing a simulation.
Figure 2.48 Solution window.
Figure 2.49 Creating a dependent source.
Figure 2.50 Circuit from Fig. 2.49 adapted to read out the currents through R1, R2, and the dependent source.
Figure 3.1 Circuit with dependent source $V_a = 5I_1$.
Figure 3.2 Circuit for Example 3-1.
Figure 3.3 Example 3-2.
Figure 3.4 Circuit containing two supernodes and one quasi-supernode.
A supernode composed of nodes V_2 and V_3 can be represented as a single node, in terms of summing currents flowing out of them, plus an auxiliary equation that defines the voltage difference between V_3 and V_2.

\[I_1 + I_2 + I_5 + I_6 = 0 \quad \text{(KCL)} \]

\[V_3 - V_2 = 10 \, \text{V} \quad \text{(KVL)} \]
Figure 3.6 Circuit for Example 3-3.
Figure 3.7 Circuit containing two meshes with mesh currents I_1 and I_2.
Figure 3.8 Circuit for Example 3-4.
Figure 3.9 Mesh-current solution for a circuit containing a dependent source (Example 3-5).
Figure 3.10 Concept of a supermesh.

(a) Two adjoining meshes sharing a current source constitute a supermesh.

(b) Meshes 2 and 3 can be combined into a single supermesh equation, plus an auxiliary equation $I_0 = I_2 - I_3$.
Figure 3.11 Using the supermesh concept to simplify solution of the circuit in Example 3-6.
Application of the nodal-analysis by-inspection method is facilitated by replacing resistors with conductances.

Figure 3.12 Application of the nodal-analysis by-inspection method is facilitated by replacing resistors with conductances.
Figure 3.13 Circuit for Example 3-7.
Figure 3.14 Three-mesh circuit of Example 3-8.
Figure 3.15 Application of the source-superposition method to the circuit of Example 3-9.
Figure 3.16 Application of superposition to the circuit of Example 3-10.
Figure 3.17 Cell-phone block diagram.
Figure 3.18 Input and output circuits as seen from the perspective of a radio-frequency amplifier circuit.
Figure 3.19 (a) Power distribution system driving a fan and a lamp in a house, and (b) block diagram of the source (power distribution system), fan, lamp, and a voltmeter measuring the voltage in the outlet.
Figure 3.20 A circuit can be represented in terms of a Thévenin equivalent comprising a voltage source v_{Th} in series with a resistance R_{Th}.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 3.21 Equivalency means that v_{Th} of the Thévenin equivalent circuit is equal to the open-circuit voltage for the actual circuit.
Figure 3.22 Thévenin voltage is equal to the open-circuit voltage and Thévenin resistance is equal to the ratio of v_{oc} to i_{sc}, where i_{sc} is the short-circuit current between the output terminals.
Figure 3.23 Applying open circuit/short circuit method to find the Thévenin equivalent for the circuit of Example 3-10.
For a circuit that does not contain dependent sources, R_{Th} can be determined by deactivating all sources (replacing voltage sources with short circuits and current sources with open circuits) and then simplifying the circuit down to a single resistance R_{eq}.

Figure 3.24 For a circuit that does not contain dependent sources, R_{Th} can be determined by deactivating all sources (replacing voltage sources with short circuits and current sources with open circuits) and then simplifying the circuit down to a single resistance R_{eq}.
Figure 3.25 After deactivation of sources, systematic simplification leads to R_{Th} (Example 3-12).
Figure 3.26 If a circuit contains both dependent and independent sources, R_{Th} can be determined by (a) deactivating only independent sources (by replacing independent voltage sources with short circuits and independent current sources with open circuits), (b) adding an external source v_{ex}, and then (c) solving the circuit to determine i_{ex}. The solution is $R_{Th} = v_{ex}/i_{ex}$.
Solution of the open-circuit voltage gives \(V_{ab} = V_{Th} = 15 \text{ V} \). Use of the external-voltage method leads to \(R_{Th} = 56/11 \Omega \) (Example 3-13).

Figure 3.27 Solution of the open-circuit voltage gives \(V_{ab} = V_{Th} = 15 \text{ V} \). Use of the external-voltage method leads to \(R_{Th} = 56/11 \Omega \) (Example 3-13).
Figure 3.28 Equivalence between Thévenin and Norton equivalent circuits, consistent with the source transformation method of Section 2-3.4.

Thévenin equivalent circuit

Norton equivalent circuit

\[i_N = \frac{v_{Th}}{R_{Th}} \]

\[R_N = R_{Th} \]
Figure 3.29 Repeated application of Thévenin-equivalent circuit technique.
To analyze the transfer of voltage, current, and power from the source circuit to the load circuit, we first replace them with their Thévenin equivalents.

Figure 3.30 To analyze the transfer of voltage, current, and power from the source circuit to the load circuit, we first replace them with their Thévenin equivalents.
Figure 3.31 Variation of power p_L dissipated in the load R_L, as a function of R_L.
Figure 3.32 Evolution of the circuit of Example 3-15.
Figure 3.33 Configurations and symbols for (a) pnp and (b) npn transistors.
Figure 3.34 dc equivalent model for the npn transistor. The equivalent dc source $V_{BE} \approx 0.7$ V.
Figure 3.35 Circuit for Example 3-16.
Figure 3.36 Circuit for Example 3.17.
Figure 3.37 Circuit analysis with Multisim.
Figure 3.38 (a) Circuit with a switch, and (b) its Multisim representation.
Figure 3.39 Multisim procedure for calculating power consumed (or generated) by the seven elements in the circuit of Fig. 3.37(a).
Figure 4.1 The circuit diagram of the Model 741 op amp consists of 20 transistors, several resistors, and one capacitor.
Figure 4.2 Operational amplifier.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 4.3 Op-amp transfer characteristics. The linear range extends between $v_o = -V_{cc}$ and $+V_{cc}$. The slope of the line is the op-amp gain A.
Figure 4.4 Circuit gain G is the ratio of the output voltage v_L to the signal input voltage v_s.
Figure 4.5 Op amp operated as a switch. The ±V_{cc} flags indicate the dc supply voltages connected to pins 7 and 4.
Figure 4.6 Equivalent circuit model for an op amp operating in the linear range ($v_o \leq |V_{cc}|$). Voltages v_p, v_n, and v_o are referenced to ground.
Figure 4.7 Noninverting amplifier circuit of Example 4-1.
Figure 4.8 Trade-off between gain and dynamic range.
Figure 4.9 Ideal op-amp model.
Figure 4.10 Noninverting amplifier circuit: (a) using ideal op-amp model and (b) equivalent block-diagram representation.
Figure 4.11 Inverting amplifier circuit and its block-diagram equivalent.
Figure 4.12 Inverting amplifier circuit of Example 4-2.
Figure 4.13 Inverting summing amplifier.
Figure 4.14 Two-stage circuit realization of $v_0 = 4v_1 + 7v_2$.

Stage 1: Inverting summing amp

$\Delta v_0 = \left(\frac{-R_{f_1}}{R_1} \right) v_1 + \left(\frac{-R_{f_1}}{R_2} \right) v_2$

Stage 2: Inverting amp

$v_{o2} = \left(\frac{-R_{f_2}}{R_{s2}} \right) v_{o1}$

Circuit Design

<table>
<thead>
<tr>
<th>Circuit Design</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>14 kΩ</td>
</tr>
<tr>
<td>R_2</td>
<td>8 kΩ</td>
</tr>
<tr>
<td>R_{f_1}</td>
<td>56 kΩ</td>
</tr>
<tr>
<td>R_{s1}</td>
<td>20 kΩ</td>
</tr>
<tr>
<td>R_{f_2}</td>
<td>20 kΩ</td>
</tr>
</tbody>
</table>
Figure 4.15 Noninverting summer.

\[G_1 = \left(\frac{R_1 + R_2}{R_2} \right) \left(\frac{R_{s1}}{R_{s1} + R_{s2}} \right) \]

\[v_o = G_1v_1 + G_2v_2 \]
Figure 4.16 Difference-amplifier circuit.

\[G_1 = -\frac{R_2}{R_1} \]
\[G_2 = \frac{R_4}{R_3 + R_4} \left(\frac{R_1 + R_2}{R_1} \right) \]
\[v_o = G_1 v_1 + G_2 v_2 \]
Figure 4.17 The voltage follower provides no voltage gain \((v_o = v_s)\), but it insulates the input circuit from the load.
Figure 4.18 Block-diagram representation (Example 4-4).
Figure 4.19 Design of a circuit for the pressure sensor of Example 4-5 with $P_0 =$ pressure at sea level and $P =$ pressure at height h.
Figure 4.20 Example 4-6.
Figure 4.21 Circuit for Example 4–7.
Figure 4.22 Comparison of direct and differential measurement uncertainties.
Figure 4.23 Instrumentation-amplifier circuit.
Figure 4.24 A digital-to-analog converter transforms a digital signal into an analog voltage proportional to the decimal value of the digital sequence.

\[V_{\text{out}} = G(2^{n-1}V_1 + 2^{n-2}V_2 + \cdots + 2V_{n-1} + V_n) \]
Figure 4.25 Circuit implementation of a DAC.
\[V_{\text{Th}} = \frac{V_1}{2} + \frac{V_2}{4} + \frac{V_3}{8} + \frac{V_4}{16} \]

\[R_{\text{Th}} = R \]

Figure 4.26 R–$2R$ ladder digital-to-analog converter.
Figure 4.27 MOSFET symbol and voltage designations.
Figure 4.28 MOSFET (a) circuit, (b) characteristic curves, (c) equivalent circuit, and (d) associated characteristic lines.
Figure 4.29 Complementary characteristic curves for NMOS and PMOS.
Figure 4.30 CMOS inverter.
Figure 4.31 MOSFET amplifier circuit for Example 4.9.
Figure 4.32 Buffer circuit for Example 4-10.
Figure 4.33 Three-dimensional neural probe (5 mm × 5 mm × 3 mm). (Courtesy of Prof. Ken Wise and Gayatri Perlin, University of Michigan.)
Figure 4.34 Neural-probe circuit for Example 4-11.
Figure 4.35 Wheatstone-bridge op-amp circuit.
Figure 4.36 Multisim window of the circuit of Fig. 4.35. The oscilloscope trace shows the 60 Hz waveform of the output voltage. Had the voltage source been a dc source, the oscilloscope trace would have been a horizontal line.
Figure 4.37 Multisim equivalent of the MOSFET circuit of Fig. 4.30.
Figure 4.38 Input and output voltages $V(1)$ and $V(2)$ in the circuit of Fig. 4.37 as a function of time.
Figure 4.39 Output response of the MOSFET inverter circuit of Fig. 4.37 as a function of the amplitude of the input voltage.
Figure 5.1 Circuit response to (a) dc source $v(t) = V_0$ and (b) ac source $v(t) = V_0 \cos \omega t$.
Figure 5.2 Step functions: (a) ideal step function, (b) realistic step function with transition duration Δt, (c) time-shifted step function $V_0 u(t - 3)$, $T > 0$, $T = 3s$, (d) time-shifted step function $V_0 u(3 - t)$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse
Circuits
© 2015 National Technology Press
Connecting/disconnecting a voltage source to/from a circuit via a switch can be represented mathematically by a step function.

Figure 5.3 Connecting/disconnecting a voltage source to/from a circuit via a switch can be represented mathematically by a step function.
Figure 5.4 Time-shifted ramp functions.
Figure 5.5 Step waveform of Example 5-1.
Figure 5.6 Connecting a switch to a dc source at $t = 1\, \text{s}$ and then returning it to ground at $t = 5\, \text{s}$ constitutes a voltage pulse centered at $T = 3\, \text{s}$ and of duration $\tau = 4\, \text{s}$.
Figure 5.7 Rectangular pulses.
Figure 5.8 Rectangular and trapezoidal pulses of Example 5-2.
By $t = \tau$, the exponential function $e^{-t/\tau}$ has decayed to 37 percent of its original value at $t = 0$.

Figure 5.9 By $t = \tau$, the exponential function $e^{-t/\tau}$ has decayed to 37 percent of its original value at $t = 0$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse *Circuits* © 2015 National Technology Press
Figure 5.10 Properties of the exponential function.
Figure 5.11 Parallel-plate capacitor with plates of area A, separated by a distance d, and filled with an insulating dielectric material of permittivity ε.
Figure 5.12 Various types of capacitors.
Figure 5.13 Passive sign convention for capacitor: if current i is entering the (+) voltage terminal across the capacitor, then power is getting transferred into the capacitor. Conversely, if i is leaving the (+) terminal, then power is getting released from the capacitor.
Figure 5.14 Example 5-3 waveforms for i, v, p, and w.
Figure 5.15 Under dc conditions, capacitors behave like open circuits.
Figure 5.16 Capacitors in series.
Figure 5.17 Capacitors in parallel.
Figure 5.18 Circuit for Example 5-5.
(a) \[v_1 = \left(\frac{R_1}{R_1 + R_2} \right) v_s \]
\[v_2 = \left(\frac{R_2}{R_1 + R_2} \right) v_s \]

(b) \[v_1 = \left(\frac{C_2}{C_1 + C_2} \right) v_s \]
\[v_2 = \left(\frac{C_1}{C_1 + C_2} \right) v_s \]

Figure 5.19 Voltage-division rules for (a) in-series resistors and (b) in-series capacitors.
The inductance of a solenoid of length ℓ and cross-sectional area S is $L = \mu N^2 S / \ell$, where N is the number of turns and μ is the magnetic permeability of the core material.
Figure 5.21 Various types of inductors.
Figure 5.22 Passive sign convention for an inductor.
Figure 5.23 Circuit for Example 5-7.
Figure 5.24 Inductors in series.
Combining In-Parallel Inductors

\[L_{eq} = \left(\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} \right)^{-1} \]

Figure 5.25 Inductors in parallel.
Figure 5.26 Under steady-state dc conditions, capacitors act like open circuits, and inductors act like short circuits.
Figure 5.27 Generic first-order RC circuit.
Figure 5.28 RC circuit with an initially charged capacitor that starts to discharge its energy after $t = 0$.

(a) RC circuit

(b) At $t = 0^-$ (fully charged capacitor)

(c) At $t > 0$ (capacitor discharging)
Figure 5.29 Response of the RC circuit in Fig. 5.28(a) to moving the SPDT switch to terminal 2.
Figure 5.30 RC circuit switched from source V_{s_1} to source V_{s_2} at $t = 0$.
Figure 5.31 Replacing a resistive circuit with its Thévenin equivalent as seen by capacitor C.
Figure 5.32 Circuit for Example 5-9.
Figure 5.33 Circuit for Example 5-10 [part (a)].
Figure 5.34 After having been in position 1 for a long time, the switch is moved to position 2 at $t = 0$ and then returned to position 1 at $t = 10$ s (Example 5-11).
Figure 5.35 RC-circuit response to a 4 s long rectangular pulse.
Figure 5.36 RL circuit disconnected from a current source at $t = 0$.

(a) Switch is moved at $t = 0$

(b) Initial condition at $t = 0^-$

(c) Circuit at $t \geq 0$ (natural response)
Figure 5.37 RL circuit switched between two current sources at $t = 0$.
Figure 5.38 Circuit for Example 5-13.
Figure 5.39 Circuit and associated plot for Example 5-14.
Figure 5.40 Integrator circuit.
Figure 5.41 Example 5-15 (a) input signal, (b) output signal with no op-amp saturation, and (c) output signal with op-amp saturation at -9 V.
Figure 5.42 Differentiator circuit.
Figure 5.43 Op-amp circuit of Example 5-16.
Figure 5.44 Circuit for Example 5-17.
Figure 5.45 Op-amp circuit whose output $v(t)$ is a solution to $v'' + 8v' + 2v = 12\sin(200t) u(t)$.

RC = 1
Gain = -1

Op Amp 1
Op Amp 2
Op Amp 3
Op Amp 4

Differentiator
Differentiator
Inverter

$R = 6R$
$R = R$

Summing point
Summer

$u(t) \leq V_{cc}$

$R = R$

$v = -\frac{1}{2} v'' - 4v' + 6\sin(200t)$

$\sin(200t)$

$t = 0
Figure 5.46 Pulse sequence.
\[C = \frac{\pi \varepsilon \ell}{\ln\left(\frac{d}{2a} + \sqrt{\left(\frac{d}{2a}\right)^2 - 1}\right)} \]
\[\approx \frac{\pi \varepsilon \ell}{\ln(d/a)} \quad \text{if } d \gg a \]

Figure 5.47 Capacitance of a two-wire configuration where \(\varepsilon \) is the permittivity of the material separating the wires.
Figure 5.48 n-channel MOSFET (NMOS): (a) circuit symbol with added parasitic capacitances and (b) equivalent circuit. [In a PMOS, parasitic capacitances C_{D} and C_{S} should be shown connected to V_{DD} instead of to ground.]
Figure 5.49 Common drain inverter circuit with parasitic capacitances. Superscripts “n” and “p” refer to the NMOS and PMOS transistors, respectively.
Figure 5.50 (a) Equivalent circuit for the CMOS inverter; (b) the response of $v_{out}(t)$ to v_{in} changing states from 0 to V_{DD} at $t = 0$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 5.51 RC circuit with an SPST switch.
Figure 5.52 Multisim equivalent of the RC circuit in Fig. 5.51.
Figure 5.53 Transient response of the circuit in Fig. 5.52.
Figure 5.54 Multisim analysis of a circuit containing time-dependent sources.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse *Circuits* © 2015 National Technology Press
Figure 6.1 Examples of second-order circuits.
Figure 6.2 Circuit of Example 6-1.

(a) Circuit

(b) At $t = 0^-$, C acts like an open circuit and L like a short circuit

(c) At $t = 0$, C acts like a voltage source and L like a current source with zero current

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 6.3 Circuit for Example 6-2.
Figure 6.4 Illustrating the charge-up and discharge responses of a series RLC circuit with $V_s = 24$ V. In all cases $R = 12 \, \Omega$ and $L = 0.3 \, \text{H}$, which specifies $\alpha = R/2L = 20 \, \text{Np/s}$. When $C = 0.01 \, \text{F}$, the response is overdamped, when $C = 8.33 \, \text{mF}$, the response is critically damped, and when $C = 0.72 \, \text{mF}$, the response is underdamped.
Figure 6.5 Connecting a series RLC circuit with a charged-up capacitor to a source with higher voltage.
Figure 6.6 Connecting a series RLC circuit with a charged-up capacitor to a source with lower voltage.
Figure 6.7 Series RLC circuit connected to a source V_s at $t = 0$. In general, the capacitor may have had an initial charge on it at $t = 0^-$, with a corresponding initial voltage $v_C(0^-)$.
Figure 6.8 Example 6-3: (a) circuit, (b) $v_C(t)$, and (c) $i_C(t)$.
Figure 6.9 Circuit for Example 6-4.
Figure 6.10 Circuit response for Example 6-5.
Figure 6.11 Example 6-6 (a) circuit and (b) $v_C(t)$.
Figure 6.12 Example 6.7 with $V_s = 12$ V, $R = 40$ Ω, $L = 0.8$ H, and $C = 2$ mF.
Figure 6.13 Circuit for Example 6-8.
Figure 6.14 The differential equation for $v_C(t)$ of the series RLC circuit shown in (a) is identical in form to that of the current $i_L(t)$ in the parallel RLC circuit in (b).
Figure 6.15 Circuit for Example 6-9.
Figure 6.16 Circuit for Example 6-10.

(a) Circuit with switch

(b) At \(t = 0^- \): \(i_L(0^-) = \frac{V_0}{(R_1 + R_2 + R_3)} = 1 \text{ A} \), and \(v_C(0^-) = i_L(0^-) R_3 = 12 \text{ V} \).

(c) At \(t \geq 0 \)

(d) At \(t = \infty \): \(i_L(\infty) = \frac{V_0}{(R_1 + R_3)} = 1.5 \text{ A} \).
Figure 6.17 Circuit for Example 6-11.
Figure 6.18 Op-amp circuit of Example 6-12.
Figure 6.19 Multisim screen with RLC circuit.
Figure 6.20 Voltage responses to moving the switch in the RLC circuit from position 2 to position 1.
Figure 6.21 Illustration of an RFID transceiver in close proximity to an RFID tag. Note that the RFID tag will only couple to the transceiver when the two inductors are aligned along the magnetic field (shown in blue).
Figure 6.22 Basic elements of the RFID.
Figure 6.23 Multisim rendition of RFID circuit.
Figure 6.24 Oscilloscope trace for RFID receive channel $v_{out}(t)$ after moving the switch from T to R.
Figure 7.1 The function \(v(t) = V_m \cos \omega t \) plotted as a function of (a) \(\omega t \) and (b) \(t \).
\[\nu(t) = V_m \cos\left(\left(\frac{2\pi t}{T}\right) + \phi\right) \]

Figure 7.2 Plots of \(\nu(t) = V_m \cos\left(\left(\frac{2\pi t}{T}\right) + \phi\right) \) for three different values of \(\phi \).
Figure 7.3 Relation between rectangular and polar representations of a complex number $z = x + jy = |z|e^{j\theta}$.
Figure 7.4 Complex numbers z_1 to z_4 have the same magnitude $|z| = \sqrt{2^2 + 3^2} = 3.61$, but their polar angles depend on the polarities of their real and imaginary components.
Figure 7.5 Complex numbers V and I in the complex plane (Example 7-3).
Figure 7.6 RC circuit connected to an ac source.
Figure 7.7 Five-step procedure for analyzing ac circuits using the phasor-domain technique.
Figure 7.8 RL circuit of Example 7-5.
Figure 7.9 Three different, two-element, series combinations.
Figure 7.10 Voltage division among two impedances in series.

\[V_1 = \left(\frac{Z_1}{Z_1 + Z_2} \right) V_s \]

\[V_2 = \left(\frac{Z_2}{Z_1 + Z_2} \right) V_s \]
Figure 7.11 Current division among two admittances in parallel.

\[I_1 = \left(\frac{Y_1}{Y_1 + Y_2} \right) I_s \quad I_2 = \left(\frac{Y_2}{Y_1 + Y_2} \right) I_s \]
Figure 7.12 Circuit for Example 7-6.
Figure 7.13 Circuit for Example 7-7.
Figure 7.14 Y–Δ equivalent circuits.
Figure 7.15 Example 7-8 circuit evolution.
Figure 7.16 Source-transformation equivalency.
Figure 7.17 Thévenin-equivalent method for a circuit with no dependent sources.
Figure 7.18 The (a) open-circuit/short-circuit method and (b) the external-source method are both suitable for determining \(Z_{Th} \), whether or not the circuit contains dependent sources.
Figure 7.19 Using source transformation to simplify the circuit of Example 7-9. (All impedances are in ohms.)
Figure 7.20 Phasor diagrams for R, L, and C.

Resistor

$$I_R = \frac{V_R}{R} \quad \text{(independent of } \omega)$$

Capacitor

$$I_C = j\omega CV_C \quad \text{(directly proportional to } \omega)$$

Inductor

$$I_L = -\frac{jV_L}{\omega L} \quad \text{(inversely proportional to } \omega)$$
Figure 7.21 Circuit and phasor diagrams for Example 7-10. The true phase angle of \(I \) is 66.87°, so if the relative phasor diagram in (c) were to be rotated counterclockwise by that angle and the scale adjusted to incorporate the fact \(I_0 = 2 \), the diagram would coincide with the absolute phasor diagram in (d).
Figure 7.22 The phase-shift circuit changes the phase of the input signal by ϕ.

$v_{in}(t) = V_1 \cos \omega t$

$v_{out}(t) = V_2 \cos(\omega t + \phi)
Figure 7.23 RC phase-shift circuit: the phase of v_{out1} (across R) leads the phase of $v_{\text{in}}(t)$, whereas the phase of v_{out2} (across C) lags the phase of $v_{\text{in}}(t)$.
Figure 7.24 Three-stage, cascaded, RC phase-shifter (Example 7-11).
Figure 7.25 Circuit for Example 7-12 in (a) the time domain and (b) the phasor domain.
Figure 7.26 Equivalent of the circuit in Fig. 7.25, after source transformation of voltage sources into current sources and replacement of passive elements with their equivalent admittances.
Figure 7.27 Phasor-domain circuit containing a supernode and a dependent source (Example 7-13).
Figure 7.28 Circuit for Example 7-14.
Figure 7.29 Demonstration of the source-superposition technique (Example 7-15).
Figure 7.30 After determining the open-circuit voltage in part (b) and the short-circuit current in part (c), the Thévenin equivalent circuit is connected to the inductor to determine I_L.
Figure 7.31 Op-amp (a) equivalent circuit (for both dc and ac) and (b) ideal model (for dc, and ac at low frequencies).
Figure 7.32 Open-loop gain A versus frequency for the LM741 op amp.
Figure 7.33 Inverting amplifier.
Figure 7.34 Inverting amplifier as a phase-shift circuit.
Figure 7.35 Block diagram of a basic dc power supply.
Figure 7.36 Schematic symbol for an ideal transformer. Note the reversal of the voltage polarity and current direction when the dot location at the secondary is moved from the top end of the coil to the bottom end. For both configurations:

\[
\frac{v_2}{v_1} = \frac{N_2}{N_1} = n, \quad \frac{i_2}{i_1} = \frac{N_1}{N_2} = \frac{1}{n}, \quad \frac{p_2}{p_1} = \frac{v_2i_2}{v_1i_1} = 1
\]
Figure 7.37 Half-wave rectifier circuit.
Figure 7.38 Full-wave bridge rectifier. Current flows in the same direction through the load resistor for both half cycles.
Figure 7.39 Smoothing filter reduces the variations of waveform $v_{out}(t)$.
Figure 7.40 Complete power-supply circuit.
Figure 7.41 Distributed impedance model of two-wire transmission line.
Figure 7.42 Transmission-line circuit in Multisim.
Figure 7.43 Multisim display of voltage waveforms at nodes 1, 2, 3, 4, 5, and 6.
Figure 7.44 Using the Logic Analyzer to measure time delay in Multisim.
Figure 7.45 Logic Analyzer readout at nodes 1, 2, 3, 4, 5, and 6.
Figure 7.46 Multisim Grapher Plot of voltage nodes V(1), V(2), and V(6) in the circuit of Fig. 7.42.
Figure 7.47 Using Measurement Probes to determine phase and amplitude of signal at various points on transmission line.
Figure 8.1 Examples of three periodic waveforms.
Figure 8.2 Passive load circuit connected to an input source at terminals \((a, b)\).
Figure 8.3 Waveforms for a 60 Hz circuit with
v(t) = 4\cos(377t + 30^\circ) \text{ V},
\ i(t) = 3\cos(377t - 30^\circ) \text{ A},
\text{ and}\ p(t) = v(t) \ i(t).\ The\ waveform\ of\ i(t)\ is\ shifted\ by
60^\circ\ behind\ that\ of\ v(t),\ and\ the\ oscillation\ frequency\ of\ p(t)\ is\ twice\ that\ of\ v(t)\ or\ i(t).
Figure 8.4 Source circuit connected to an impedance Z of a load circuit.
Figure 8.5 Complex power S lies in quadrant 1 for an inductive load and in quadrant 4 for a capacitive load.
Figure 8.6 Example 8-3.
Figure 8.7 Circuit for Example 8-4.
Figure 8.8 Inductive and capacitive loads connected to an electrical source.
Figure 8.9 Adding a shunt capacitor across an inductive load reduces the current supplied by the generator.
Figure 8.10 Comparison of source currents and power factor triangles for the compensated and uncompensated circuits.
Figure 8.11 Power triangles for Example 8-6.

(a) $P_L = 200 \text{ kW}$, $Q_L = 150 \text{ kVAR}$, $\delta = 36.87^\circ$, $\text{pf} = 0.8$

(b) $P_L = 200 \text{ kW}$, $Q' = 65.72 \text{ kVAR}$, $\delta' = 18.19^\circ$, $\text{pf}' = 0.95$
Figure 8.12 Replacing the source and load circuits with their respective Thévenin equivalents.
Figure 8.13 Circuit for Example 8-7.
Figure 8.14 Matching network in between the source and the load.
Figure 8.15 Multisim simulation of matching network (CM, RM) in between the source and the load, and wattmeter displays for maximum power transfer.
Figure 8.16 Multisim circuit without instruments.
Figure 8.17 Spectral plots of the magnitude and phase of the complex power S at terminals (3,0) in Fig. 8.16.
Figure 9.1 The voltage-gain transfer function is
\[H(\omega) = \frac{V_{\text{out}}(\omega)}{V_{\text{in}}(\omega)} \]
Figure 9.2 Typical magnitude spectral responses for the four types of filters.
Figure 9.3 Resonant peak in the spectral response of a lowpass filter circuit.
Resonance occurs when the imaginary part of the input impedance is zero. For the RL circuit, $\Im\{Z_{in_1}\} = 0$ when $\omega = 0$ (dc), but for the RLC circuit, $\Im\{Z_{in_2}\} = 0$ requires that $Z_L = -Z_C$ or, equivalently, $\omega^2 = 1/LC$.

Figure 9.4 Resonance occurs when the imaginary part of the input impedance is zero. For the RL circuit, $\Im\{Z_{in_1}\} = 0$ when $\omega = 0$ (dc), but for the RLC circuit, $\Im\{Z_{in_2}\} = 0$ requires that $Z_L = -Z_C$ or, equivalently, $\omega^2 = 1/LC$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse
Circuits © 2015 National Technology Press
Figure 9.5 Lowpass and highpass transfer functions.
Figure 9.6 Circuit of Example 9-1.
Figure 9.7 Prototype and scaled circuits of Example 9-2.
Figure 9.8 Magnitude and phase plots of $H = \frac{V_{\text{out}}}{V_s}$.
Figure 9.9 Comparison of exact plots with the Bode straight-line approximations for a simple zero with a corner frequency ω_c.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 9.10 Comparison of exact plots with Bode straight-line approximations for a quadratic zero

\[[1 + j2\xi \omega / \omega_c + (j\omega / \omega_c)^2] \]
Figure 9.11 Bode amplitude and phase plots for the transfer function of Example 9-4.
Figure 9.12 Bode magnitude and phase plots for Example 9-5.
Figure 9.13 Bode plot of bandreject filter of Example 9-6.
Figure 9.14 Series RLC circuit.
Figure 9.15 Series RLC bandpass filter.
Figure 9.16 Examples of bandpass-filter responses.
Figure 9.17 10 dB bandwidth extends from ω_a to ω_b, corresponding to M_{BP} (dB) = -10 dB.
Figure 9.18 Two-stage RLC circuit of Example 9-8.
Figure 9.19 Plots of M_{HP} [dB] for $Q = 2$ (weak resonance) and $Q = 10$ (moderate resonance).
Figure 9.20 RLC lowpass filter.
Figure 9.21 Bandreject filter.
Figure 9.22 Comparison of magnitude responses of the first-order RC filter and the second-order RLC filter. The corner frequencies are given by $\omega_{c1} = 1/RC$ and $\omega_{c2} = 1.28/RC$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse *Circuits* © 2015 National Technology Press
Figure 9.23 Inverting amplifier functioning like a lowpass filter.
Figure 9.24 Single-pole active highpass filter.
Figure 9.25 (a) In-series cascade of a lowpass and a highpass filter generates a bandpass filter; (b) in-parallel cascading generates a bandreject filter.
Figure 9.26 Three-stage lowpass filter and corresponding transfer functions.
Figure 9.27 Active bandpass filter of Example 9-11.
Figure 9.28 Bandreject filter of Example 9-12.
Figure 9.29 Overview of AM and FM.

(a) AM

Signal $v_s(t)$

Carrier $v_c = A \cos 2\pi f_c t$

Amplitude modulated waveform

$v_{am}(t) = A(t) \cos 2\pi f_c t$

with: $A(t) = a_0 + v_s(t)$
$f_c = \text{constant}$

(b) FM

Signal $v_s(t)$

Carrier $v_c = A \cos 2\pi f_c t$

Frequency modulated waveform

$v_{fm}(t) = A \cos 2\pi f_c t$

with: $f_c = f_0 + b_0 v_s(t)$
$A = \text{constant}$
\[v_{am}(t) = A(t) \cos(2\pi f_c t) \], with: \(A(t) = a_0 + v_d(t) \)

Figure 9.30 Block diagram of superheterodyne receiver.
Figure 9.31 A series RLC filter implemented in Multisim.
Figure 9.32 Magnitude and phase plots for the circuit of Fig. 9.31 generated by AC Analysis for Example 9-13.
Figure 9.33 AC analysis plots for the circuit in Fig. 9.31 generated with the Parameter Sweep tool in Example 9-14. The capacitance was varied from 1 to 10 pF.
Figure 9.34 Three-stage op-amp circuit of Fig. 9.26(a) reproduced in Multisim for Example 9-15.
Figure 9.35 Output of Bode Plotter Instrument for Example 9-16.
Figure 10.1 Typical electrical power grid.
Figure 10.2 A 4800 V rms single-phase ac source connected to a residential user through a 20 : 1 step-down transformer.
Figure 10.3 Three-phase ac generator and associated voltage waveforms.
Figure 10.4 Y- and Δ-source configurations, with $V_{YS} = \text{rms value of the phase-voltage magnitude of the Y-source}$. The rms magnitude of the Δ-source phase voltages is $\sqrt{3} V_{YS}$.
The three-phase source and load circuits can be connected in four possible arrangements: Y-Y, Y-∆, ∆-Y, and ∆-∆. In each arrangement, the source and load circuits are connected via transmission lines carrying line currents I_{L1}, I_{L2}, and I_{L3}. [Parts (c) and (d) follow on the next page.]

Figure 10.5 The three-phase source and load circuits can be connected in four possible arrangements: Y-Y, Y-∆, ∆-Y, and ∆-∆. In each arrangement, the source and load circuits are connected via transmission lines carrying line currents I_{L1}, I_{L2}, and I_{L3}. [Parts (c) and (d) follow on the next page.]
Load Phase Currents
I_a, I_b, I_c
(same as line currents I_{L1}, I_{L2}, and I_{L3})

Load Phase Voltages
V_{aN}, V_{bN}, V_{cN}

Load Phase Currents
I_{ab}, I_{bc}, I_{ca}

Load Phase Voltages
V_{ab}, V_{bc}, V_{ca}
(same as source voltages if Z_{TL} is negligible)

(c) Δ-Y configuration

(d) Δ-Δ configuration

(Fig. 10-5 continued)
Figure 10.6 Three-phase Y source connected to a Y load circuit via transmission lines.
Figure 10.7 Y-Δ transformation for balanced load circuits.
Figure 10.8 The balanced Y-Y network is equivalent to the sum of three, independent single-phase circuits.
Figure 10.9 Circuit of Example 10-3 (voltage values are rms).
Figure 10.10 Δ-Δ network of Example 10-4.
Figure 10.11 Balanced Y-load circuit with line voltages V_{ab} to V_{ca}, line currents I_{L1} to I_{L3}, phase voltages V_{aN} to V_{cN}, and phase currents I_a to I_c.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 10.12 Balanced Δ-load circuit connected to a balanced Y-source.
\(\mathbf{I}_{L_1} = (44.56 + j1.23) \text{ A (rms)} \)
\(\mathbf{I}_{L_2} = (-26.94 - j31.32) \text{ A (rms)} \)
\(\mathbf{I}_{L_3} = (-17.63 - j30.09) \text{ A (rms)} \)
\(\mathbf{I}_{ab} = (33.31 + j5.95) \text{ A (rms)} \)
\(\mathbf{I}_{bc} = (6.38 - j25.37) \text{ A (rms)} \)
\(\mathbf{I}_{ca} = (-11.25 + j4.72) \text{ A (rms)} \)

Figure 10.13 Circuit of Example 10-4 with calculated values of the currents.
A balanced three-phase load can be compensated by treating it as three individual circuits each consuming one-third of the total power.

Figure 10.14
Figure 10.15 Three-phase source connected in parallel to three loads, each a balanced three-phase load (Example 10-7).
Figure 10.16 A wattmeter uses two coils. The double polarity mark (±) of the current coil denotes the terminal that should be toward the source, and on the voltage coil, ± marks the terminal that should be connected to the line containing the current coil.
Figure 10.17 Two-wattmeter method applied to an unbalanced Δ-load.
Figure 11.1 Magnetically coupled coils.
Figure 11.2 Dot convention for the mutual-inductance voltage induced in coil 2 by current i_1 in coil 1, and vice versa.
Figure 11.3 Polarities of voltage components for clockwise (CW) and counterclockwise (CCW) current directions.
Figure 11.4 Circuit of Example 11-1.
Figure 11.5 Circuit of Example 11-2.
Figure 11.6 Finding L_{eq} of two series-coupled inductors (Example 11-3).
Figure 11.7 Magnetically coupled coils.
Figure 11.8 (a) Transformer circuit with coil resistors R_1 and R_2, and (b) in terms of an equivalent input impedance Z_{in}.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse *Circuits* © 2015 National Technology Press
Figure 11.9 Circuit of Example 11-4.
Figure 11.10 The transformer can be modeled in terms of T- or Π-equivalent circuits.
Figure 11.11 (a) Original circuit and (b) after replacing transformer with T-equivalent circuit.
Reversing the direction of either current or if dots are on opposite ends, M should be replaced with $-M$.

Figure 11.12 Transformer and its T-equivalent circuit. Reversing the direction of either current or if dots are on opposite ends, M should be replaced with $-M$.
Figure 11.13 Circuits of Example 11-6.
Figure 11.14 Schematic symbol for an ideal transformer. Note the reversal of the voltage polarity and current direction when the dot location at the secondary is moved from the top end of the coil to the bottom end. For both configurations: $V_2/V_1 = N_2/N_1 = n$, $I_2/I_1 = N_1/N_2 = 1/n$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse Circuits © 2015 National Technology Press
Figure 11.15 Thévenin equivalent circuit of Example 11-7.
Figure 11.16 Autotransformer circuits.
Figure 11.17 Three possible connection configurations for three-phase transformers.
Figure 11.18 Circuit of Example 11-10.
Figure 12.1 Unit impulse function.
Figure 12.2 The top horizontal sequence involves solving a differential equation entirely in the time domain. The bottom horizontal sequence involves a much easier solution of a linear equation in the s-domain.
Figure 12.3 Singularity functions for Example 12-1.
Figure 12.4 The dc source, in combination with the switch, constitutes an input excitation $v_s(t) = V_0 u(t)$.
Figure 12.5 Circuit for Example 12-6.
Figure 12.6 Example 12-7.
Figure 12.7 Example 12-8.
Figure 12.8 Circuit for Example 12-9.
Figure 12.9 Circuit for Example 12-10.
Figure 12.10 (a) RC circuit excited by a 1 V, 1 s rectangular pulse at 0.5 s, and (b) the corresponding response at node 2.
Figure 12.11 Multisim rendition of the circuit response to a sudden (but temporary) change in supply voltage level.
Figure 12.12 Multisim rendition of the circuit response to an arbitrary input signal produced by the PWL (Piecewise Linear) source.
Figure 13.1 RL circuit excited by a square wave and corresponding output response.
Figure 13.2 Comparison of the square-wave waveform with its Fourier series representation using only the first term (b), the sum of the first three (c), ten (d), and 100 terms (e).
Figure 13.3 Sawtooth waveform: (a) original waveform, (b)–(e) representation by a truncated Fourier series with $n_{\text{max}} = 1, 2, 10, \text{ and } 100$, respectively.
Figure 13.4 Periodic waveform of Example 13-2 with its associated line spectra.
Figure 13.5 Waveforms with (a) dc symmetry, (b and c) even symmetry, and (d and e) odd symmetry.
Figure 13.6 Plots for Example 13-3.
Figure 13.7 Waveforms for Example 13-4.
Figure 13.8 Circuit response to periodic pulses (Example 13-5).
Figure 13.9 Circuit and plots for Example 13-6.
Figure 13.10 Voltage across and current into a circuit segment.
Figure 13.11 The single pulse in (c) is equivalent to a periodic pulse train with $T = \infty$.

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse
Circuits © 2015 National Technology Press
Figure 13.12 Line spectra for pulse trains with $T/\tau = 5, 10, \text{ and } 20$.
Figure 13.13 (a) Rectangular pulse of amplitude A and width τ; (b) frequency spectrum of $|F(\omega)|$ for $A = 5$ and $\tau = 1$ s.
Figure 13.14 (a) The Fourier transform of $\delta(t)$ is 1 and (b) the Fourier transform of 1 is $2\pi \delta(\omega)$. \\

Fawwaz T. Ulaby, Michel M. Maharbiz and Cynthia M. Furse *Circuits* © 2015 National Technology Press
Figure 13.15 Time-frequency duality: a rectangular pulse generates a sinc spectrum and, conversely, a sinc-pulse generates a rectangular spectrum.
Figure 13.16 The Fourier transform of $\cos \omega_0 t$ is equal to two impulse functions—one at ω_0 and another at $-\omega_0$.
Figure 13.17 The model shown in (b) approaches the exact definition of \(\text{sgn}(t) \) as \(\varepsilon \rightarrow 0 \).
Figure 13.18 Circuits for Example 13-11.
Figure 13.19 This mixed-signal chip implements a highly reconfigurable RF receiver based on a down-converting Sigma-Delta A/D (courtesy Renaldi Winoto and Prof. Borivoje Nikolic, U.C. Berkeley)
Figure 13.20 (a) A traditional 4-bit ADC converts an analog input voltage and produces 4 digital output bits; (b) a ΣΔ ADC generates a pulse train where the pulse duration is governed by the magnitude of the input voltage.
Figure 13.21 Block diagram of a $\Sigma\Delta$ modulator.
Figure 13.22 Complete Multisim circuit of the ΣΔ modulator.
Figure 13.23 A 1 Hz sinusoidal ac signal, $v_{in}(t)$, blue trace, is converted to a series of pulses at the output, $v_{out}(t)$, red trace, by the Sigma Delta modulator. Note that the duration of the pulses is related to the instantaneous level of voltage $v_{in}(t)$.