MULTISIM DEMO 8.5*: MAXIMIZING POWER DELIVERED TO A LOAD IN A COMPLEX CIRCUIT

In Multisim Demo 3.6 we looked at how power transfer to a load resistor is maximized when $R_S = R_L$. For complex circuits, we'll now show that power transfer to a load is maximized when $Z_S = Z_L^*$.

Observe the circuit in Fig. 8.5.1. It is composed of an AC source with an amplitude of 10 V, a source resistor and capacitor, a load resistor, and a matching inductor. We will run an AC Analysis plotting the power dissipated in the load resistor for four values of matching inductor.

Once the circuit is constructed, it should resemble Fig. 8.5.2. Don't worry about the value of the inductor LM because we will be varying it in a Parameter Sweep Analysis.

Set up the Parameter Sweep using the values and selections shown in Fig. 8.5.3 on the next page. We will be sweeping the value of the inductor from 5 mH to 155 mH in 50 mH increments. Make sure to set the Analysis to sweep to be an AC Analysis, and set the specifics of said Analysis to those shown in Fig. 8.5.4.

 Parameter Sweep
Analysis Parameters Output Analysis Options Summary
Sweep Parameters
Sweep Parameter Device Type Inductor
Device Parameter V Name Im
Parameter inductance
Present Value 0.002 H
Description Inductance of inductor
Points to sweep Start 5 mH Image: Start Sweep Variation Type Start 5 mH Image: Start Linear Increment 4 Image: Start Image: Start
More Options
Analysis to sweep AC Analysis Edit Analysis
Group all traces on one plot
 Simulate OK Cancel Help
Figure 8 5 3 Parameter Sween Analysis Specifications

Sweep of AC Analysis X Frequency Parameters X Start frequency (FSTART) 1 Stop frequency (FSTOP) 10 MHz X Sweep type Decade Number of points per decade 50 Vertical scale Logarithmic	
OK Cancel Help	

We want to plot the power dissipated in the load resistor. Therefore, the Selected variables for analysis field under the Output tab should contain the following variable equation: real(0.5*V(4)*(real(-I(v1)),-imag(-I(v1)))). Make sure you keep track of your parentheses when writing this equation!

When everything is all set, press Simulate. The results of the simulation are shown on the next page in Fig. 8.5.5 and 8.5.6. Why are the peaks for each value at different frequencies? The reason is as follows:

Because RL and RS are equal we need only pay attention to the value of CS and LM. In order for Z_L to equal Z_S^* we need to have the impedance contribution from LM be equal in magnitude but opposite in sign to the impedance contribution of CS. Thankfully the sign difference is taken care of by the fact that one component is a capacitor and the other is an inductor. Thus we need:

$$\frac{-j}{\omega \cdot C} = -j \cdot \omega \cdot L$$

Since we know the value of C (it is CS) and we essentially pick a value of L in the simulation, we should be able to calculate a frequency where L and C cancel one another out, which should result in maximum power transfer. This equation is:

$$f = \frac{1}{2\pi\sqrt{L \cdot C}}$$

Well this is interesting...that's nothing more than the resonance frequency of the two components. Very interesting...Let's find the frequency for each inductor value at which the power transfer should be maximum and compare it to the values obtained in the plots.

LM = 5 mH:	f = 14.529 kHz
<i>LM</i> = 55 mH:	f = 4.381 kHz
<i>LM</i> = 105 mH:	f = 3.170 kHz
<i>LM</i> = 155 mH:	f = 2.609 kHz

From looking at Figures 8.5.5 and 8.5.6 we obtain the values:

LM = 5 mH:	f = 14.454 kHz
<i>LM</i> = 55 mH:	f = 4.365 kHz
<i>LM</i> = 105 mH:	f = 3.162 kHz
<i>LM</i> = 155 mH:	f = 2.630 kHz

The values are all very close to one another. Excellent!

out the impedance of the capacitor.